Photosynthetica 2020, 58(SI):348-357 | DOI: 10.32615/ps.2019.171

Special issue in honour of Prof. Reto J. Strasser – Analysis of drought response of sunflower inbred lines by chlorophyll a fluorescence induction kinetics

Ö. ARSLAN1, A.S. BALKAN NALÇAİYİ2,3, ª. ÇULHA ERDAL2, V. PEKCAN4, Y. KAYA5, N. ÇİÇEK2, Y. EKMEKÇİ2
1 Department of Food Processing, University College of Espiye, University of Giresun, 28600 Giresun, Turkey
2 Hacettepe University, Faculty of Science, Department of Biology, 06800 Beytepe, Ankara, Turkey
3 Necmettin Erbakan University, Faculty of Science, Department of Molecular Biology and Genetics, 42090 Meram, Konya, Turkey
4 Trakya Agricultural Research Institute, PO Box 16, 22100 Edirne, Turkey
5 Trakya University, Faculty of Engineering, Genetics and Bioengineering, Ahmet Karadeniz Campus, Edirne, Turkey

The aim of the study was to screen nine inbred lines of sunflower by inducing drought for 10 d and subsequent rewatering for 5 d. Impact of drought was determined by chlorophyll fluorescence and some physiological parameters. Drought led to a decrease in the photosynthetic performance, the quantum yield, and efficiency of electron transport in sunflower lines, while it caused an increase in the absorption flux per reaction centre, dissipation of an active reaction centre, and K-band as well as L-band. Drought also decreased the total chlorophyll contents and water status of the lines, which contributed to photoinhibition. Our results suggested that drought may restrict light harvesting and electron transport in the sunflower lines at various levels. Drought did not cause irreversible membrane damage, since the lines recovered after rewatering. Considering all results, the inbred lines TT317-R and 2478-A were adversely affected by drought when compared to other lines, while 9753-2R exhibited better photosynthetic performance under drought and might be considered as the most tolerant among the lines.

Additional key words: Helianthus annuus L.; JIP-test; OJIP transient; water deficit.

Received: July 28, 2019; Revised: November 29, 2019; Accepted: December 13, 2019; Prepublished online: January 17, 2020; Published: May 28, 2020  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
ARSLAN, Ö., NALÇAİYİ, A.S.B., ÇULHA ERDAL, ª., PEKCAN, V., KAYA, Y., ÇİÇEK, N., & EKMEKÇİ, Y. (2020). Special issue in honour of Prof. Reto J. Strasser – Analysis of drought response of sunflower inbred lines by chlorophyll a fluorescence induction kinetics. Photosynthetica58(SPECIAL ISSUE), 348-357. doi: 10.32615/ps.2019.171
Download citation

Supplementary files

Download fileArslan 2342 supplement.docx

File size: 39.65 kB

References

  1. Boureima S., Oukarroum A., Diouf M. et al.: Screening for drought tolerance in mutant germplasm of sesame (Sesamum indicum) probing by chlorophyll a fluorescence. - Environ. Exp. Bot. 81: 37-43, 2012. Go to original source...
  2. Brestiè M., ®ivèák M.: PSII fluorescence techniques for measurement of drought and high temperature stress signal in crop plants: Protocols and applications. - In: Rout G.R., Das A.B. (ed.): Molecular Stress Physiology of Plants. Pp. 87-131. Springer, Dordrecht 2013. Go to original source...
  3. Ceppi M.G., Oukarroum A., Çiçek N. et al.: The IP amplitude of the fluorescence rise OJIP is sensitive to changes in the photosystem I content of leaves: A study on plants exposed to magnesium and sulphate deficiencies, drought stress and salt stress. - Physiol. Plantarum 144: 277-288, 2012. Go to original source...
  4. Çiçek N., Arslan Ö., Çulha-Erdal ª. et al.: Are the photosynthetic performance indexes and the drought factor index satisfactory selection criterion for stress? - Fresen. Environ. Bull. 24: 4190-4198, 2015.
  5. Çiçek N., Oukarroum A., Strasser R.J., Schansker G.: Salt stress effects on the photosynthetic electron transport chain in two chickpea lines differing in their salt stress tolerance. - Photosynth. Res. 136: 291-301, 2018. Go to original source...
  6. Çiçek N., Pekcan V., Arslan Ö. et al.: Assessing drought tolerance in field-grown sunflower hybrids by chlorophyll fluorescence kinetics. - Braz. J. Bot. 42: 249-260, 2019. Go to original source...
  7. Dwivedi S.K., Arora A., Singh V.P., Singh G.P.: Induction of water deficit tolerance in wheat due to exogenous application of plant growth regulators: membrane stability, water relations and photosynthesis. - Photosynthetica 56: 478-486, 2018. Go to original source...
  8. Falqueto A.R., da Silva Júnior R.A., Gomes M.T.G. et al.: Effect of drought stress on chlorophyll a fluorescence in two rubber tree clones. - Sci. Hortic.-Amsterdam 224: 238-243, 2017. Go to original source...
  9. Farooq M., Hussain M., Siddique H.M.: Drought stress in wheat during flowering and grain-filling periods. - Crit. Rev. Plant Sci. 33: 331-349, 2014. Go to original source...
  10. Goltsev V., Zaharieva I., Chernev P. et al.: Drought-induced modifications of photosynthetic electron transport in intact leaves: Analysis and use of neural networks as a tool for a rapid non-invasive estimation. - BBA-Bioenergetics 1817: 1490-1498, 2012. Go to original source...
  11. Goltsev V.N., Kalaji H.M., Paunov M. et al.: Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus. - Russ. J. Plant Physl+ 63: 869-893, 2016. Go to original source...
  12. Guo Y.Y., Titan S.S., Liu S.S. et al.: Energy dissipation and antioxidant enzyme system protect photosystem II of sweet sorghum under drought stress. - Photosynthetica 56: 861-872, 2018. Go to original source...
  13. Hussain M.M., Rauf S., Warburton M.L.: Development of drought-tolerant breeding lines derived from Helianthus annuus × H. argophyllus interspecific crosses. - Plant Breeding 138: 862-870, 2019. Go to original source...
  14. Kalaji H.M., Jajoo A., Oukarroum A. et al.: Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. - Acta Physiol. Plant. 38: 102, 2016. Go to original source...
  15. Kalaji H.M., Oukarroum A., Alexandrov V. et al.: Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements. - Plant Physiol. Bioch. 81: 16-25, 2014a. Go to original source...
  16. Kalaji H.M., Raèková L., Paganová V. et al.: Can chlorophyll-a fluorescence parameters be used as bio-indicators to distinguish between drought and salinity stress in Tilia cordata Mill? - Environ. Exp. Bot. 152: 149-157, 2018a. Go to original source...
  17. Kalaji H.M., Rastogi A., ®ivèák M. et al.: Prompt chlorophyll fluorescence as a tool for crop phenotyping: An example of barley landraces exposed to various abiotic stress factors. - Photosynthetica 56: 953-961, 2018b. Go to original source...
  18. Kalaji H.M., Schansker G., Ladle R.J. et al.: Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. - Photosynth. Res. 122: 121-158, 2014b. Go to original source...
  19. Kaya Y., Balkan Nalcaiyi A.S., Culha Erdal S. et al.: Evaluation of male inbred lines of sunflower (Helianthus annuus L.) for resistance to drought via chlorophyll fluorescence. - Turk. J. Field Crops 21: 162-173, 2016. Go to original source...
  20. Khatri K., Rathore M.S.: Photosystem photochemistry, prompt and delayed fluorescence, photosynthetic responses and electron flow in tobacco under drought and salt stress. - Photosynthetica 57: 61-74, 2019. Go to original source...
  21. Lichtenthaler H.K.: Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. - Method. Enzymol. 148: 350-382, 1987. Go to original source...
  22. Liu S., Li X., Larsen D.H. et al.: Drought priming at vegetative growth stage enhances nitrogen-use efficiency under post-anthesis drought and heat stress in wheat. - J. Agron. Crop Sci. 203: 29-40, 2017. Go to original source...
  23. Lotfi R., Kalaji H.M., Valizadeh G.R. et al.: Effects of humic acid on photosynthetic efficiency of rapeseed plants growing under different watering conditions. - Photosynthetica 56: 962-970, 2018. Go to original source...
  24. Macar T.K., Ekmekçi Y.: PSII Photochemistry and antioxidant responses of chickpea variety exposed to drought. - Z. Naturforsch. 63: 583-594, 2008. Go to original source...
  25. Mlinariæ S., Antunoviæ Duniæ J., Skendroviæ Babojeliæ M. et al.: Differential accumulation of photosynthetic proteins regulates diurnal photochemical adjustments of PSII in common fig (Ficus carica L.) leaves. - J. Plant Physiol. 209: 1-10, 2017. Go to original source...
  26. Nishiyama Y., Allakhverdiev S.I., Murata N.: A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. - BBA-Bioenergetics 1757: 742-749, 2006. Go to original source...
  27. Oukarroum A., Bussotti F., Goltsev V., Kalaji H.M.: Correlation between reactive oxygen species production and photochemistry of photosystems I and II in Lemna gibba L. plants under salt stress. - Environ. Exp. Bot. 109: 80-88, 2015. Go to original source...
  28. Oukarroum A., Madidi S.E., Schansker G., Strasser R.J.: Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and re-watering. - Environ. Exp. Bot. 60: 438-446, 2007. Go to original source...
  29. Öz M.T., Turan Ö., Kayihan C. et al.: Evaluation of photosynthetic performance of wheat cultivars exposed to boron toxicity by the JIP fluorescence test. - Photosynthetica 52: 555-563, 2014. Go to original source...
  30. Pekcan V., Evci G., Yilmaz M.I. et al.: Evaluating foliar responses of sunflower genotypes under drought stress. - IJSRST 6: 54-63, 2015.
  31. Rauf S., Sienkiewicz-Paderewska D., Malinowski D.P. et al.: Forages: Ecology, breeding objectives and procedures. - In: Al-Khayri J., Jain S., Johnson D. (ed.): Advances in Plant Breeding Strategies: Agronomic, Abiotic and Biotic Stress Traits. Pp. 149-201. Springer, Cham 2016. Go to original source...
  32. Rauf S.: Breeding sunflower (Helianthus annuus L.) for drought tolerance. - Comm. Biometr. Crop Sci. 3: 29-44, 2008.
  33. Redmann R.E., Haraldson J., Gusta L.V.: Leakage of UV-absorbing substances as a measure of salt injury in leaf tissue of woody species. - Physiol. Plantarum 67: 87-91, 1986. Go to original source...
  34. Ripoll J., Bertin N., Bidel L.P.R., Urban L.: A user's view of the parameters derived from the induction curves of maximal chlorophyll a fluorescence: Perspectives for analyzing stress. - Front. Plant Sci. 7: 1679, 2016. Go to original source...
  35. Saglam A., Saruhan N., Terzi R., Kadioglu A.: The relations between antioxidant enzymes and chlorophyll fluorescence parameters in common bean cultivars differing in sensitivity to drought stress. - Russ. J. Plant Physl+ 58: 60-68, 2011. Go to original source...
  36. Schansker G., Toth S.Z., Strasser R.J.: Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the Chl a fluorescence rise OJIP. - BBA-Bioenergetics 1706: 250-261, 2005. Go to original source...
  37. Schreiber U., Bilger W., Neubauer C.: Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. - In: Schulze E.D., Caldwell M.M. (ed.): Ecophysiology of Photosynthesis. Pp. 40-70. Springer, Berlin-Heidelberg 1995. Go to original source...
  38. Semerci A., Çiçek N., Karahan F.A. et al.: Some growth and chlorophyll fluorescence parameters of black and hybrid poplar clones under water stress. - Turk. J. Agric. For. 41: 348-356, 2017. Go to original source...
  39. Stirbet A., Lazár D., Kromdijk J., Govindjee: Chlorophyll a fluorescence induction: Can just a one-second measurement be used to quantify abiotic stress responses? - Photosynthetica 56: 86-104, 2018. Go to original source...
  40. Strasser R.J., Tsimilli-Michael M., Qiang S., Goltsev V.: Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. - BBA-Bioenergetics 1797: 1313-1326, 2010. Go to original source...
  41. Strasser R.J., Tsimilli-Michael M., Srivastava A.: Analysis of the chlorophyll a fluorescence transient. - In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Pp. 321-362. Springer, Dordrecht 2004. Go to original source...
  42. Umar M., Uddin Z., Siddiqui Z.S.: Responses of photosynthetic apparatus in sunflower cultivars to combined drought and salt stress. - Photosynthetica 57: 627-639, 2019. Go to original source...
  43. Williams L.E., Araujo F.J.: Correlation among predawn leaf, midday leaf, and midday stem water potential and their correlations with other measures of soil and plant water status in Vitis vinifera. - J. Am. Soc. Hortic. Sci. 127: 448-454, 2002. Go to original source...
  44. Yusuf M.A., Kumar D., Rajwanshi R. et al.: Overexpression of γ-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: Physiological and chlorophyll a fluorescence measurements. - BBA-Bioenergetics 1797: 1428-1438, 2010. Go to original source...
  45. Zakhidov E., Nematov S., Kuvondikov V.: Monitoring of the drought tolerance of various cotton genotypes using chlorophyll fluorescence. - In: Najafpour M. (ed.): Applied Photosynthesis: New Progress. Pp. 91-110. IntechOpen, 2016. Go to original source...
  46. Zheng H.F., Xin L.F., Guo J.M. et al.: Adaptation of photo-synthesis to water deficit in the reproductive phase of a maize (Zea mays L.) inbred line. - Photosynthetica 57: 399-408, 2019. Go to original source...
  47. ®ivèák M., Brestiè M., Balatová Z. et al.: Photosynthetic electron transport and specific photoprotective responses in wheat leaves under drought stress. - Photosynth. Res. 117: 529-546, 2013. Go to original source...
  48. ®ivèák M., Kalaji H.M., Shao H.B. et al.: Photosynthetic proton and electron transport in wheat leaves under prolonged moderate drought stress. - J. Photoch. Photobio. B 137: 107-115, 2014. Go to original source...