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2. Material and Methods 
2.1 Material 
Hazelnut shells used in this study were purchased from Beşikdüzü, Trabzon, Turkey. Raw materials were 
air dried until 9% moisture. The dried materials were grounded by grinder and screened with a sieve 
shaker to obtain particle sizes between 0.224-0.850 mm. Samples were stored in plastic bags at +4 0C for 
future use. Celluclast 1.5 L and Novozyme 188 were purchased from Sigma Aldrich (St. Louis, USA). 
Aminex HPX 87P column was purchased from Bio-Rad Laboratories (California, USA). All chemicals used 
were standard analytical grades. 

2.2 Pretreatment and enzymatic hydrolysis of hazelnut shells 
Saturated steam treatment of hazelnut shells was performed in a PARR stainless steel reactor at 160oC, 
180 oC and 200 oC, for 15 min and 30 min. Approximately 7 g of dry hazelnut shells were mixed with 
70 mL of water in a Teflon liner. The vessel was heated until desired temperature and pretreatment time 
was initiated. After treatment the reactor vessel was moved from heating jacket. The content of the reactor 
was cooled down to 80 0C. The pretreated solid was used as the substrate for enzymatic hydrolysis. 
Enzymatic hydrolysis was carried out in stoppered conical flasks (50 mL). The pH was adjusted to 4.8 with 
acetate buffer, and a mixture of cellulase (60 FPU/g dry biomass) and β-Glucosidase (40 CBU/g dry 
biomass) was added to pretreated substrate in a total working volume of 20 mL. The hydrolysis reactions 
were carried out at 50 oC for 48 h by shaking at 150 rpm. The reactions were stopped in a boiling water 
bath for 15 min and hydrolysates were clarified by centrifuging at 5,000 rpm for 5 min. The supernatants 
were analyzed for glucose and xylose using HPLC. Concentration of reducing sugar was determined by 
DNS method (Miller, 1959). 

2.3 Analytical methods 
The chemical composition of raw and pretreated hazelnut shells were determined according to NREL 
(Sluiter et al., 2008a., 2008b) methods. 0.3 g solid was hydrolyzed by 3 mL of 72 % (w/w) H2SO4 at 30 oC 
for 60 min then, the reaction mixture was diluted to 4 % (w/w) and autoclaved at 121 oC for 60 min. Lignin 
was determined by solid residue, cellulose and hemicellulose amount were determined from filtrate by 
using High Performance Liquid Chromatography (Agilent 1100). The HPLC system was mainly equipped 
with a Bio-Rad Aminex HPX-87P column (300 mm × 7.8 mm), and a refractive index detector. The 
analytical column was operated at 80 °C with 0.2 μm filtered HPLC grade water as the mobile phase. 
Mobile phase flow rate was 0.6 mL/min.  
Enzyme activity of Celluclast 1.5L® was determined by NREL protocols and reported as Filter Paper Unit 
(FPU) (Adney and Baker, 2008). One unit of FPU is defined as the amount of enzyme required to liberate 
1µmol of glucose from Whatman no:1 filter paper per minute at 50 oC. One cellobiose unit (CBU) is the 
amount of enzyme that converts 1mmol of cellobiose to 2 mmol of glucose per minute. Hemicellulose 
removal (%) (Eq.1), Cellulose digestion (%) (Eq.2), saccharification yield (%) (Eq.3) are calculated as 
follows; 
(%)		݈ܽݒ݋݉݁ݎ	݁ݏ݋݈ݑ݈݈݁ܿ݅݉݁ܪ  = ቀ100 − ୅୫୭୳୬୲	୦ୣ୫୧ୡୣ୪୪୳୪୭ୱୣ	୧୬	୮୰ୣ୲୰ୣୟ୲ୣୢ	ୱ୭୪୧ୢ୅୫୭୳୬୲	୭୤	୦ୣ୫୧ୡୣ୪୪୳୪୭ୱୣ	୧୬	୧୬୧୲୧ୟ୪	ୱ୭୪୧ୢ ቁ  (1)    100ݔ

(%)	݊݋݅ݐݏ݁݃݅ܦ	݁ݏ݋݈ݑ݈݈݁ܥ  = ୅୫୭୳୬୲	୭୤	୥୪୳ୡ୭ୱୣ	୮୰୭ୢ୳ୡୣୢ୶଴.ଽ୅୫୭୳୬୲	୭୤	ୡୣ୪୪୳୪୭ୱୣ	୧୬	୮୰ୣ୲୰ୣୟ୲ୣୢ	ୱ୭୪୧ୢ  (2) 100ݔ

(݃/݃݉)		ݕݎ݁ݒ݋ܴܿ݁	݁ݏ݋ܿݑ݈ܩ  = ୅୫୭୳୬୲	୭୤	୥୪୳ୡ୭ୱୣ	୮୰୭ୢ୳ୡୣୢ୶଴.ଽ୅୫୭୳୬୲	୭୤	ୡୣ୪୪୳୪୭ୱୣ	୧୬	୳୬୮୰ୣ୲୰ୣୟ୲ୣୢ	ୱ୭୪୧ୢ  (3)  100ݔ

3. Results and discussions 
3.1 Composition of hazelnut shell 
Figure 1 showed to composition of dried hazelnut shells. Lignin fraction was the main content (51.3 %) of 
total raw material. Hazelnut shells were consisted 16.7 % cellulose and 13.3 % hemicellulose. 
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cellulose digestion (%) was presented in Figure 3. Maximum cellulose digestibility was obtained at the 
conditions of 180 oC for 30 min (46 %).  

 

Figure 3. Effect of processing parameters on the cellulose digestion of pretreated hazelnut shells 

Total reducing sugar, glucose and xylose produced by enzymatic hydrolysis of raw material was only 45, 
15 and 1 mg/g untreated solid, respectively (Figure 4). Fermentable sugar concentration was increased 
with increase in temperature as well as pretreatment time. Total reducing sugar from enzymatic hydrolysis 
was ranged between 119 to 177 mg/g substrate. Maximum reducing sugar was obtained at 200 oC for 30 
min. Produced glucose was varied between 63 and 91 mg/g substrate. Higher glucose content was 
obtained at 200oC. Glucose recovery ranged from 337 to 456 mg/ g initial solid (Figure 5). 

 

Figure 4. Fermentable sugar from enzymatic hydrolysis of pretreated hazelnut shells 
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Figure 5. Glucose recovery enzymatic hydrolysis of pretreated hazelnut shells 

4. Conclusion 
In response saturated steam pretreatment of hazelnut shells, the maximum hemicellulose removal (83%) 
observed at the pretreatment conditions of 200oC for 30 min. Maximum cellulose digestibility (46%) is 
found at the conditions of 180oC for 30 min. Saturated steam pretreatment allowed to produce around 177 
mg/ g substrate of fermentable sugar. After 15 min pretreatment at 180oC, around 46% of glucose 
recovered. The results obtained in this study was promising for the production of fermentable sugar after 
the saturated steam pretreatment of hazelnut shells. However, further investigations are needed to 
increase sugar yield, and separation lignin and hemicellulose rate. 
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