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Abstract: Since the emergence of COVID-19, the clinical manifestations are continually challenging 

the clinicians and scientists for the rapid development of a preventive solution of SARS-CoV-2 

infections. Our hypothesis was inspired by the fact that the bats during powered flights generate heat 

shock responses via HSP70 and HSP90, which safeguard them from deadly viruses, including SARS-

CoV-2 harbored within the bats. Therefore, we hypothesized that HSP70 and HSP90 bind with S-ACE2 

and/or AngII, thereby making ACE2 less available or unavailable for SARS-CoV-2, which may 

enhance immunity inhibiting the cytokine storm and acute respiratory distress syndrome (ARDS). 

Using molecular docking approaches, molecular dynamics (MD) simulation and CYP450 metabolism 

studies, detailed protein-protein (S-ACE2), complex protein-protein (HSP70/90-S-ACE2), and 

complex protein-ligands interactions (HSP70/90-S-ACE2-ASP/PIP/HYD) were carried out to establish 

the most probable protective mechanism of HSPs in SARS-CoV-2 mediated ARDS. Our results showed 

that out of many ligands tested, piperaquine (PIP) and Aspirin (ASP) interacted quite efficiently with 

HSP70/90-AngII compared to the HSP70/90-S-ACE2 with the formation of a relatively stable complex 

having excellent DockThor scores, ∆G, and Kd values. Further, it could be predicted that ASP-inducible 

HSP70/90 and PIP might work through binding with the accumulated AngII due to malfunctioning of 

ACE2, thereby preventing the cytokine storm ARDS with fewer chances of clot formation too in 

COVID-19 patients. However, these purely in silico findings need to be validated in the in vitro/in 

vivo experimentations for further insight into the proposed preventive mechanism(s).  
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1. Introduction 

Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐

2) in December 2019, also known as 2019‐nCoV, it has infected over 66 million people 

worldwide with >1.5 million deaths in the past one year as reported by the worldometers 

(www.worldometers.info). The exponential growth of COVID-19 cases, health infrastructure, 

availability, and preparedness of medical and paramedical staff to handle and contain the rapid 
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spread of SARS-CoV-2 put many developed and developing countries under unexpected and 

challenging pressure. The age- and gender-based severity of COVID-19 infection, clinical 

symptoms, inter-individual response to the infection, mortality, and treatment outcomes had 

seen unexplained geographical variations among the countries [1]. Many clinical symptoms 

from COVID-19 infection have been observed, which includes but not limited to, e.g., cold, 

dry cough, mild to high fever, diarrhea, loss of taste and smell, severe respiratory illness, acute 

respiratory distress syndrome (ARDS), pulmonary embolism, pneumonia, blood clot 

formation, heart and brain strokes [2]. 

SARS-CoV-2 is a cytoplasmic replicating pathogen with positive-polarity, single-

stranded RNA (ssRNA) genome consists of four major membrane-bound proteins viz., spike 

(S), envelope (E), and membrane (M), and nucleocapsid (N) glycoproteins along with few 

subsidiary proteins [3,4]. The S-protein consists of two domains, S1 and S2. S1 contains the 

N-terminal domain (NTD) and C-terminal domain (CTD), collectively known as receptor 

binding sites. S1-CTD is considered the receptor-binding domain (RBD) in SARS-CoV-2 and 

MERS-CoV [3]. As a vital part of the pathogen-host entry, these glycoproteins have gained 

high momentum towards designing immunotherapeutics and prophylactic vaccines against 

COVID-19 [5,6]. 

The most plausible mechanism has been depicted by the sequence analysis and several 

docking studies that S-protein binds tightly with angiotensin-converting enzyme 2 (ACE2) and 

thereby moving inside the host cell [7,8]. However, identifying the exact receptor binding site 

of SARS-CoV-2 with its host receptor ACE2 is underway [9-11]. 

Further, in a normal cell, ACE2 converts angiotensin II (AngII) into angiotensin I-VII, 

thereby preventing adverse effects on the cardiovascular system. However, in COVID-19 

patients, due to S-ACE2 complex formation, it may not have enough cellular level of ACE2 to 

convert AngII to AngI-V, and as a result, serum AngII concentration increases. The increased 

concentration of AngII induces IL-6 family cytokines, followed by activation of the IL-6 

amplifier that subsequently induces other proinflammatory cytokines and chemokines, leading 

to the onset of a cytokine storm. The cytokine storm causes acute respiratory distress syndrome 

(ARDS), responsible for the death of COVID-19 patients. 

The scrupulous reports on bats' role as a reservoir for viruses causing various outbreaks, 

including Ebola, SARS, MERS, Nipah, Zika, Hendra, and 2019-nCoV viruses, have been 

published that reveals their unusual survival [12,13]. These viruses often cause severe 

morbidity and mortality in mammals, while bats remain clinically asymptomatic upon 

infection. Throughout evolution, bats may have gained novel functions permitting them to 

coexist with these viruses, thus evading the onset of severe pathology [14]. The most probable 

explanation for bats' immunity from these viruses' deleterious effects is a spurt of heat shock 

proteins (HSPs) during bats' powered flight [15]. 

HSPs, produced during high temperature and stress responses, are ubiquitous, 

evolutionary conserved proteins with multiple intracellular functions. The higher basal 

expression level of HSP70 and HSP90 could be a bat-unique, essential factor to modulate 

cellular stress and death. Consequently, bat cells survive prolonged heat treatment compared 

to other mammalian cells suggesting HSP expression in bats could be a vital adaption to 

intrinsic metabolic stresses such as powered flight. Further, up-regulated HSP70 and HSP90 

during viral infection in bat species may serve as a cushion from the deleterious effects of 

various deadly viruses it harbors [15,16]. However, these viruses, when infecting another host 

like humans, who generally have lower levels of HSPs in normal physiological conditions (at 
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37 ºC), pose severe and sometimes fatal effects. Further, simple drugs like sodium salicylate 

and aspirin have been shown to induce the HSP70 and HSP90 even at lower temperatures (20-

22 °C) in fish cell line CHSE-214 [17]. Additionally, HSP70 also inhibits cytokine storm 

induced from viruses like SARS by modulating the NFκB pathway [18]. 

Another interesting side-effect of SARS-CoV-2 is lung injury due to pulmonary 

embolism, which induces the formation of blot clots in both symptomatic and asymptomatic 

patients. Subsequently, it causes death due to heart and brain strokes [19]. Aspirin, an age-old 

pain-killer, and blood-thinning medicine, have shown promising results in some studies with 

reduced mortality from blood clots [20]; however, the underlying mechanism(s) are yet to be 

explored.  

In light of aspirin's dual-action, it is worth exploring its potential in inhibiting the 

SARS-CoV-2 transmission in humans and/or the severity of clinical manifestations. We 

investigated the most probable protective mechanism of HSP70 and HSP90 in SARS-CoV-2 

mediated ARDS using molecular docking approaches in the proposed research. We 

hypothesize that aspirin-induced HSP70 and HSP90 bind with S-ACE2 and/or AngII, thereby 

making ACE2 less available or unavailable for SARS-CoV-2, which subsequently may inhibit 

the cytokine storm and ARDS. Further, docking simulation of selected drugs viz., chloroquine, 

cinchonidine, cinchonine, erysolin, hydroxychloroquine, piperaquine, quinidine, quinine, 

sarcophine, solanidine, solanine, and spergualin with these complexes were also carried out, 

followed by MD simulation and metabolism study. The complex-ligand findings were found 

promising in explaining the protective role of HSPs in SARS-CoV-2 mediated ARDS. This 

molecular docking-based study uncovers novel drugs, piperaquine, and aspirin, to prevent 

2019-nCoV transmission and could be used as a prophylactic and therapeutic drug candidate 

against SARS-CoV-2. 

2. Materials and Methods 

2.1. Proteins 3D structure retrieval, optimization, and minimization. 

3D structure of S-protein complexed with ACE2 (PDB ID: 6LZG), HSP70 (PDB ID: 

4IO8), and HSP90 (PDB ID: 1YET) were retrieved from research collaboratory for structural 

bioinformatics (RCSB) protein data bank (PDB). All proteins were prepared as inputs for 

molecular docking by removing undesired heteroatoms, ions, and molecules. The CHARMm 

force field was assigned to them, and carried out energy minimization steps to remove steric 

clashes using the steepest descent gradient algorithm with an RMS gradient energy of 0.001 

kcal/mol [21]. 

2.2. Ligands 3D structure preparation, optimization, and minimization. 

2D structures of all ligands in SDF format were retrieved from the PubChem database 

of NCBI (http://pubchem.ncbi.nlm.nih.gov). Conversion of SDF to PDB format was achieved 

using BIOVIA discovery studio visualizer. By applying the CHARMm force field, ligands 

were energetically minimized using the steepest descent algorithm for 500 steps at an RMS 

gradient energy of 0.01 kcal/mol [21]. 
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2.3. Drug-likeness and ADMET prediction. 

Lipinski rule of five (RO5) was employed to predict the drug-likeness of ligands. RO5 

includes molecular mass (< = 500 Dalton), high lipophilicity (Log p < = 5) H-bond donors (< 

= 5), and H-bond acceptors (< = 10). These filtrations ensure drug-likeness for molecules 

obeying two or more features of RO5 [22,23]. Absorption, distribution, metabolism, excretion, 

and toxicity properties of all ligands were predicted using the PreADMET server 

(http://preadmet.bmdrc.org/) [24,25].  

2.4. Computational simulation and binding affinity prediction. 

ZDOCK and DockThor tool was used for protein-protein and protein-protein complex 

and ligand interactions, respectively [26,27].  The shape complementarity, desolvation, and 

electrostatic energy in ZDOCK generate the top 10 docking models. DockThor tool is based 

on multiple solution genetic algorithms and employs the MMFF94S scoring function to predict 

docked molds' best pose [28]. 

The PROtein binDIng enerGY (PRODIGY) server was used to analyze the molecular 

interaction tendency and stability in terms of binding affinity (∆G) and dissociation constant 

(Kd) [29,30]. Docked complexes having the least RMSD and greater binding affinity were 

taken forward for further docking analysis. 

2.5. Visualization of docked complexes. 

The surface structure and interacting residues of docked complexes were visualized 

using CHIMERA, developed at the University of California, San Francisco (UCSF), USA, and 

DIMPLOT of LigPlot+, respectively [31,32]. The DIMPLOT uses 3D coordinates of 

interacting molecules and generates 2D schematic diagrams wherein dashed lines and arcs 

exhibiting H-bonds and hydrophobic interactions, respectively.  

2.6. Molecular dynamics simulation. 

Stability and conformational changes of  HSPs and ligands complexes were checked 

through the MD simulation (MDS) process of 30 ns. Based on the docking score and the 

interaction analysis, compounds were chosen for energy minimization and MDS studies using 

the Desmond molecular dynamics system 3.1 with the OPLS AA force field. Water molecules 

were placed using the Desmond system builder by soaking the course with a pre-equilibrated 

TIP3P model from the orthorhombic water box along with 0.15 Na+ Cl- in the system as 

neutralizing compounds [33]. Minimization of the prepared system was performed up to a 

maximum of 3000 steps using the steepest descent until a gradient threshold of 25 kcal/mol/Å. 

During the MDS, the smooth Particle-Mesh-Ewald method was used to calculate long-range 

electrostatic interactions [34]. 9 Å cutoff radius value was used for the Coulumbic short-range 

interaction cutoff method. Frames of trajectory were captured at each 4.8 ps time step. Root 

mean square deviation (RMSD) and root mean square fluctuation (RMSF) of the backbone 

were calculated through the simulation with the first frames as a reference [35]. 

2.7. CYP450 metabolism prediction. 

We predicted all probable metabolism sites for CYP3A4, CYP2D6, and CYP2C9 to 

explain selected ligands' metabolism using SMARTCyp 3.0. tool [25,36]. 
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2.8. Reactivity site prediction. 

Sites of reactivity and molecular reactivity of selected ligands were predicted using the 

XenoSite server (http://swami.wustl.edu/xenosite/). It depicts in vivo metabolism and small 

chemical compounds' reactivity based on Xenosite CYP P450 prediction models [25,37]. 

2.9. Biological activity spectrum identification 

PASS online server (http://www.pharmaexpert.ru/passonline/) was used to predict the 

ligands interactions with different biological attributes using Pa and Pi representing to be found 

in a subclass of active and inactive compounds, respectively. The value of Pa and Pi lies from 

0.000 to 1.000 [25,38]. 

3. Results and Discussion 

3.1. Drug-likeness and ADMET prediction  

Drug-likeness filtration was carried out using Lipinski's RO5. Three violations in 

solanine and one violation in piperaquine, solanidine, spergaulin, geldanamycin, and 

Ver155008 were observed. The reference value for molecular weight (MW), hydrogen bond 

donor (HBD), hydrogen bond acceptor (HBA), and LogP is ≤ 500 Da, ≤ 5, ≤ 10, and ≤ 5, 

respectively. RO5 values of compounds are shown in  Table 1. 

The ADME and toxicity of selected molecules were predicted. Human intestinal 

absorption (HIA), blood-brain barrier (BBB), plasma protein binding (ppb), Madin-Darby 

canine kidney cell permeability (MDCK), and heterogeneous human epithelial colorectal 

adenocarcinoma cell permeability (Caco2) were taken under consideration. Non-toxic 

molecules were filtered using mutagenicity and carcinogenicity mouse and rat models. 

ADMET values of compounds are shown in Table 2. 

Table 1. Drug-likeness prediction of ligands. 

Compounds MW (g/m) HBD HBA LogP 

Aspirin 180.16 1 4 1.24 

Chloroquine 319.9  1 3 4.04 

Cinchonidine 294.4  1 3 3.16 

Cinchonine 294.4  1 3 3.16 

Erysolin 285.3  2 4 1.48 

Hydroxychloroquine 335.9  2 4 3.01 

Piperaquine 535.5 0 6 3.84 

Quinidine 324.4 1 4 3.17 

Quinine 324.4 1 4 3.17 

Sarcophine 316.4 0 3 4.63 

Solanidine 397.6 1 2 5.65 

Solanine 868.1 9 16 0.00 

Spergualin 403.5 8 7 -2.55 

Geldanamycin 560.6  3 9 0.00 

Ver155008 556.4  4 10 -0.21 

Table 2. ADMET prediction of ligands. 

Compounds #HIA $BBB @PPB &MDCK cell 

permeability 

*Caco2 cell 

permeability 

Ames 

test 

Carcinogenicity 

(Mouse) 

Carcinogenicity 

(Rat) 

Aspirin 90.18 0.72 37.42 37.95 20.09 mutagen negative positive 

Chloroquine 92.77 4.37 57.35 1.52 23.01 non-

mutagen 

negative positive 

Cinchonidine 92.22 3.75 14.71 273.79 51.18 mutagen negative negative 
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Compounds #HIA $BBB @PPB &MDCK cell 

permeability 

*Caco2 cell 

permeability 

Ames 

test 

Carcinogenicity 

(Mouse) 

Carcinogenicity 

(Rat) 

Cinchonine 92.22 3.75 14.71 273.79 51.18 mutagen negative negative 

Erysolin 90.96 0.76 30.79 44.14 25.05 non-

mutagen 

negative negative 

Hydroxychloroquine 88.29 1.00 29.94 50.91 50.37 mutagen negative negative 

Piperaquine 95.07 2.86 11.01 10.90 26.61 mutagen negative positive 

Quinidine 92.29 1.26 11.37 33.85 47.99 mutagen negative negative 

Quinine 92.29 1.26 11.37 33.85 47.99 mutagen negative negative 

Sarcophine 95.18 6.47 100.00 69.58 49.40 non-

mutagen 

negative negative 

Solanidine 99.86 13.22 97.92 4.17 55.23 mutagen negative positive 

Solanine 20.77 0.02 39.29 0.04 20.17 non-

mutagen 

negative negative 

Spergualin 4.25 0.029 36.89 0.53 15.32 mutagen negative negative 

Geldanamycin 20.31 0.06 12.84 0.04 20.31 non-

mutagen 

negative negative 

Ver155008 92.76 0.02 84.59 0.04 19.86 mutagen negative positive 
#HIA: Human intestinal absorption (Activity range: Poorly- 0~20%, Moderate- 20~70%, High- 70~100%) 
$BBB: Blood brain barrier (CNS active compounds (+): >1, CNS inactive compounds (-): <1) 
@PPB: Plasma protein Binding (Chemicals strongly bound > 90%, Chemicals weakly bound < 90%) 
&MDCK: Madin-Darby canine kidney cell permeability (Lower- < 25, Moderate- 25~500, Higher- > 500) 
*Caco2: Heterogeneous human epithelial colorectal adenocarcinoma cell permeability (Lower- <4, Moderate- 4~70, Higher- 

>70) 

3.2. Docking simulation and binding affinity analysis. 

3.2.1. S-protein and ACE2. 

The molecular docking of viral S-protein (S) and cellular ACE2 protein was carried out 

using the ZDOCK tool [26]. The plausible molecular interaction was depicted between S-and 

ACE2 protein, as highlighted by its Z-dock score 1457. Further, docking stability of the S-

ACE2 was checked in terms of ∆G (kcal mol-1) and Kd that was found -18.7 kcal mol-1 and 

1.5x10-15 M, respectively [29,30]. Residues Q493, K417, Y453, T376, Y505, and R403 of S-

protein was involved in H-bonding with Y255, S254, P612, D136, and D157 residues of ACE2.  

R403 residue of S-protein also exhibited salt bridge bonding with D157 residue of ACE2. 

Further, A475, G476, N487, F456, Y473, N489, L455, E484, F486, F490, Y505, Y449, G496, 

Q498, T500, N501, L455, and Y502 residues of S-protein was involved in hydrophobic 

interaction with Q24, S19, T27, F28, Y83, D30, K31, H34, A36, L79, M82, R393, G354, K353, 

E37, D38, Q42, Y41, L45, D355, R357, and N330 residues of ACE2. These interacting 

residues are in agreement with the reported data earlier [3]. 

3.2.2. HSP70 and  S-ACE2 complex. 

Docking simulation of HSP70 and S-ACE2 complex exhibited Z-dock score 1598.  ∆G 

and Kd value of HSP70-S-ACE2 was found -17.0 kcal mol-1 and 3.3x10-13 M, respectively.  

Residues N322, K309, M323, and Q325 of ACE2 were involved in H-bonding with V169, 

G166, N168, and A4 residues HSP70. K313 and E325 residues of ACE2 also exhibited salt 

bridge bonding with D160 and K3 residues of HSP70. Moreover, the residues P412, K378, 

C379, A435, Y369, and T385 of S-protein was involved in H-bonding with K190, D214, R187, 

G184, and R193 residues of HSP70. Hydrophobic residues involved in molecular interactions 

at the interface are shown in Table 3.   
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Table 3. Hydrophobic residues at the interface of the HSP70-S-ACE2 complex. 

HSP70 S-protein ACE2 

G215, I379, T188, G189, H23, L185, 

Y183, V26, G24, F21, D332, K25, 

Y371, V375, L170, L167, K159, V163, 

T140, N141, A5 

V503, Y380, I434, S375, T374, F377, 

F374, P384, S373, A372, S383, S371 

N330, W328, V316, E312, 

Q305 

HSP90 S-protein ACE2 

F213, Q212, G215, I214, P217, Y216, 

L64, T219, I218, F221, V207, K204 

P479, F486, N481, G485, V483, F490, 

G482 

V107, L79, M82, T78, E75, 

L39, F72, E35 

3.2.3. HSP70 and AngII. 

HSP70-AngII complex depicted a Z-dock score of 1326. ∆G and Kd value of the 

complex was found -12.0 kcal mol-1 and 1.6x10-9 M, respectively. R272, T204, R342, T14, 

G202, S340, and K271 residues of HSP70 were engaged in H-bonding with D1, V3, F8, H6, 

Y4, and P7 residues of AngII.  H6, R2, and D1 residues of AngII also exhibited salt bridge 

bonding with E268, R272, E367, and R269 residues of HSP70. Moreover, D199, N364, Y15, 

G368, T13, S276, G230, S275, I343, T37, F233, L200, G201, and G203 residues of HSP70 

was also involved in hydrophobic interactions. 

3.2.4. HSP90 and  S-ACE2 complex. 

Docking simulation of HSP90 and S-ACE2 complex exhibited a Z-dock score of 1648. 

∆G and Kd value of HSP90-S-ACE2 was found -12.9 kcal mol-1 and 3.7x10-10 M, respectively. 

Residues S106 and Q81 of ACE2 were involved in H-bonding with Y61 and R60 residues 

HSP90. E110 and K74 residues of ACE2 also exhibited salt bridge bonding with K58 and D57 

residues of HSP90. Moreover, the residues C480 and E484 of S-protein were involved in H-

bonding and salt bridge bonding with L220 and K208 residues of HSP90. Hydrophobic 

residues involved in molecular interactions at the interface are shown in Table 3.   

3.2.5. HSP90 and  AngII. 

HSP90-AngII complex depicted a Z-dock score of 1385. ∆G and Kd value of the 

complex was found -9.1 kcal mol-1 and 2.0x10-7 M, respectively. N106, K112, and N51 

residues of HSP90 were engaged in H-bonding with I5, F8, and Y4 residues of AngII. 

Moreover, S113, V136, A111, I210, G108, N105, I26, G135, L107, F138, G137, V186, T184, 

S52, L48, D93, and D54 residues of HSP90 was also involved in hydrophobic interactions. 

3.2.6. HSP70-S-ACE2 complex and Ligands. 

Docking simulation of HSP70-S-ACE2 complex and selected ligands was carried out 

using the DockThor tool [27]. Aspirin (ASP), Piperaquine (PIP), and Hydroxychloroquine 

(HYD) exhibited better interactions as compared to other ligands having a DockThor score of 

-7.50, -8.74, and -7.32, respectively. Moreover, K3 residue of HSP70, G502, V503, and G502 

residues of S-protein, M383, P321, M323, T324, Q325, and G354 residues of ACE2 were 

found in close vicinity to ASP.  Similarly, K3 of HSP70, T500 of S-protein, W48, N49, Q305, 

W328, E329, N330, S331, M332, L333, T334, and R357 residues of ACE2 were found in close 

contact to PIP. Likewise, I379 of HSP70, D405, G502, V503, and G504 of S-protein,  A386, 

G354, and A387 residues of ACE2 were found in surrounding HYD.  Docking stability (∆G 

and Kd) of HSP70-S-ACE2-ASP/PIP/HYD is shown in Table 4.   
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3.2.7. HSP70-AngII complex and Ligands. 

Ligands ASP, PIP, and HYD also depicted better binding than the remaining ligands 

having a DockThor score of -8.15, -9.40, and -7.95, respectively. Moreover, T37, P39, D53, 

K56, N57, and E268 residues of HSP70, D1, and I5 residues of AngII exhibited close contact 

with ASP.  Similarly, Y15, N35, R36, T37, K56, D268, R269, D366, R272, and E367 residues 

of HSP70, D1, and I5 residues of AngII were found in close vicinity to PIP. Likewise, G34, 

N35, T37, E268, N364, and D366 residues of HSP70,  D1, R2, and I5 residues of AngII were 

engaged in surrounding HYD. ∆G and Kd values of HSP70-AngII-ASP/PIP/HYD are shown 

in Table 4. Various residues of the complexities involved in molecular interactions are shown 

in Figure 1. 

Figure 1. Docked complex of HSP70-AngII-ASP/PIP/HYD. HSP70, AngII, ASP, PIP, and HYD are shown in 

orange, green, blue, cyan, and purple respectively. 

3.2.8. HSP90-S-ACE2 complex and Ligands. 

Similar to the HSP70-S-ACE2 and HSP70-AngII complexes, ligands ASP (DockThor 

score: -7.30), PIP (-8.22), and HYD (-7.28) also showed better interactions than other ligands. 

Moreover, K74, V92, Y142, and I218 residue of HSP90, G471, T430, and N388, residues of 

S-protein, G104, W303, N117, H378, and D382 residues of ACE2 were engaged in close 

contact to ASP.  Similarly, Y61, R60, and K74 residues of HSP90, C480, E471, and N354 of 

S-protein, L100, Q102, N103, G104, S106, N117, S113, Y202, and W303 residues of ACE2 

exhibited close contact with PIP. Likewise, A166, D175, K208, and V222 of HSP90, R346, 

S75, R410, and T430 residues of S-protein,  K187, Y199, D206, Y202, D509, Y510, and S511 

residues of ACE2 were found in surrounding HYD. ∆G and Kd values of HSP90-S-ACE2-

ASP/PIP/HYD are shown in Table 4. 

3.2.9. HSP90-AngII complex and Ligands. 

Ligands ASP, PIP, and HYD also exhibited better binding than the remaining ligands 

having a DockThor score of -7.89, -9.19, and -7.58, respectively. Moreover, K147, T149, I151, 
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A161, E163, R173, D175, G177, K185, I187, and H189 residues HSP90, F8, P7, and H6 

residues of AngII exhibited close contact with ASP. Similarly, I81, D86, T90, V102, I151, 

E178, M180, G181, R182, K185, and I187 residues of HSP90, F8, I5, and V3 residues of AngII 

were found in close vicinity to PIP. Likewise, K147, T149, I151, A161, E163, R173, D175, 

G177, K185, and H189 residues of HSP90,  I5, H6, and F8, residues of AngII were engaged in 

surrounding HYD. ∆G and Kd values of HSP90-AngII-ASP /PIP/HYD are shown in Table 4.   

Table 4. Complex-ligand docking analysis. 

Molecular interaction #DockThor score ∆G* (kcal mol-1) *Kd (M) H-bonding 

HSP70-S-ACE2-ASP -7.50 -15.2 2.7x10-11  4 

HSP70-S-ACE2-PIP -8.74 -16.7 3.2x10-12 5 

HSP70-S-ACE2-HYD -7.32 -15.8 3.3x10-11  4 

HSP70-AngII-ASP -8.15 -19.5 3.2x10-15 7 

HSP70-AngII-PIP -9.40 -20.3 3.4x10-16 8 

HSP70-AngII-HYD -7.95 -18.5 1.2x10-14 7 

HSP90-S-ACE2-ASP -7.30  -11.9 2.8x10-9 3 

HSP90-S-ACE2-PIP -8.22 -12.4  5.4x10-9  3 

HSP70-S-ACE2-HYD -7.28 -10.0   3.9x10-8 3 

HSP90-AngII-ASP -7.89 -19.2 1.3x10-15 4 

HSP90-AngII-PIP -9.19 -20.6 5.5x10-16 4 

HSP90-AngII-HYD -7.58 -14.8 1.5x10-11  4 
#DockThor score: Scoring function of DockThor tool. The higher score signifies a stronger binding [27]. 

*Binding affinity (∆G) and dissociation constant (Kd) predicted by PRODIGY) server [30]. 

3.3. MD simulation analysis. 

The Ligands ASP, PIP, and HYD showed comparatively better interaction with HSP70-

AngII. Consequently, the explicit solvent MD simulations of these complexes for 30 ns were 

performed to envisage conformational stability. RMSD graph of the protein-ligands complex 

reveals that the overall RMSD is around 1-3.5 Å.  

 

Figure 2. MD simulation of ligands binding to the HSP70-AngII (a) RMSD plot as a function of time. Black, 

red, blue, and grey colors represent Ver155008, ASP, PIP, and HYD, respectively. (b) RMSF plot for 

Ver155008 (black), ASP (red), PIP (blue), and HYD (grey) (c) Time evolution of Rg values of ASP (red), PIP 

(blue), and HYD (grey) during 30 ns MD simulation. 
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The overall graph states that the RMSD of the protein with the ligand PIP shows 

stability compared to other complexes. The RMSF graph states that residues 180 to 200 got 

fluctuated. Rg states that the compactness of the protein-ligand complexes is maintained 

throughout the analysis. The root mean square deviation (RMSD), root mean square fluctuation 

of residues (RMSF), and radius of gyration (Rg) are shown in Figure 2a-c. 

3.4. CYP450 metabolism prediction of selected ligands. 

CYP450 metabolism of ASP, PIP, and HYD was compared with the known inhibitor 

of HSP70 (Ver155008) based on score, energy, COO-dist, Span2end, and 2D-SASA [39]. The 

most probable CYP3A4 site of metabolism and their attributes predictions are shown in Figure 

3a-d and Table 5, respectively.  

 
Figure 3. CYP3A4 site metabolism prediction (a) ASP, (b) PIP, (c) HYD, (d) Ver155008. 

Table 5. SMARTCyp prediction score for 3A4. 

Compounds 3A4 

ranking 

Atom 3A4 

score 

#Energy 2D 

SASA 

Span2end Relative 

span 

Similarity 

ASP 1 C.1 56.0 66.4 59.3 0 1.0 0.7 

2 C.8 71.5 80.8 32.7 0 1.0 1.0 

3 C.7 72.8 80.8 33.5 1 0.8 1.0 

PIP 1 C.2 34.5 41.1 27.6 7 0.7 0.7 

2 C.7 35.8 41.1 23.3 10 0.5 0.4 

3 N.6 37.7 42.6 3.9 9 0.6 0.7 

HYD 1 C.2 33.1 41.1 27.9 2 0.9 0.7 

2 C.21 33.2 41.1 25.7 2 0.9 0.4 

3 C.4 34.5 41.1 21.0 4 0.7 0.4 

Ver155008 1 C.25 34.1 41.1 23.8 5 0.7 0.4 

2 N.34 45.8 54.1 47.0 4 0.7 0.7 

3 N.24 48.1 54.1 10.5 6 0.6 0.3 
#Reference values: Energy (<999), span2end (<=4), relative span (0.5-1), similarity (0-1) [39]. 

3.8. Reactivity site prediction of selected ligands. 

XenoSite CYP P450 prediction models reveal the metabolically labile positions of an 

atom within potential substrates, e.g., DNA, protein, glutathione, and cyanide, epoxide, and 
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quinone. The value 1 and 0 signifies reactivity and non-reactivity, respectively [40]. The 

metabolically labile positional value of selected ligands was found between the specified range. 

3.9. Biological activity spectrum identification. 

PASS algorithm forecasts numerous biological activity of small chemical compounds 

using their structural features, thereby minimize the attrition rate before their in vitro and in 

vivo experimentations. Selected ligands exhibited better antiviral, anti-neurogenic, 

antineoplastic, and cardio-protectant activity than known inhibitor Ver155008. It showed a 

value of Pa and Pi within the specified range [25,38]. 

Patients suffering from cardiac, metabolic, pulmonary, and degenerative disorders 

exhibited impaired heat shock responses (HSRs) triggered by the oxidative, metabolic, and 

thermal stresses. Individuals showed such morbidities when infected with COVID-19 

exasperated pre-existing jeopardized HSRs resulting in low expression of HSPs. Data 

accumulated so far showed the engagement of HSPs, especially HSP70 and HSP90, in SARS-

CoV-2 -mediated cytokine storm inhibition via NFκB and interferon (IFN)-mediated pathways 

[18,41]. So, people with malfunctioned HSR mechanisms step down virus-mediated 

inflammatory burst, subsequently pave the way for ARDS. Cytokine-induced ARDS 

phenomenon perpetually happens in some bat species, considered the natural host of zoonotic 

viruses, including SARS-CoV-2. Still, it does not get infected or forecast any disease symptoms 

due to better evolutionary adopted HSR mechanisms contrary to humans. Moreover, 

accumulated data highlights sodium salicylate and aspirin's utility as an inducer of HSPs [41]. 

The ∆G and Ki have been considered a standard parameter for assessing interaction 

potential at the in silico platform. The efficacy of preferred inhibition is competitive and is 

governed by the shape complementarily and Binding energy. Binding energy denotes the 

amount of energy released when two molecules interact to find a suitable complex, and as per 

laws of thermodynamics, the more the energy released more stable the bound complex will be. 

Henceforth, the molecular docking studies are always searching for protein complexes with 

higher ∆G and lower Ki value to find more stable complexes to function [42-45]. In the purview 

of the above findings, we have proposed a hypothetical pathway of virus entry into the host 

cell via S-protein and ACE2 interaction and the most probable underlying protective 

mechanism of HSPs through protein-protein and ligands' interactions (Figure 4).   

In a typical cell, the conversion of AngII into AngI-VII is facilitated by ACE2, thus 

putting its normal impact over other biological systems. On the other hand, in COVID-19 

patients, the jeopardized ACE2 mechanism leads to the accumulation of AngII, consequently 

induced inflammatory pathways accelerate the cytokine storm causing ARDS. In the proposed 

mechanism, activated HSPs (HSP70 and HSP90) have two proteins for molecular interactions: 

the S-ACE2 complex and AngII. The stability of complex formation were found as follows- 

HSP70-S-ACE2 (∆G: -17.0 kcal mol-1; Kd: 3.3x10-13 M) > HSP90-S-ACE2 (-12.9 kcal mol-1; 

3.7x10-10 M) > HSP70-AngII (-12.0 kcal mol-1; 1.6x10-9 M) > HSP90-AngII (9.1 kcal mol-1; 

2.0x10-7 M).  Further, we have checked the top three ligands' molecular interaction, namely -

ASP, PIP, and HYD with HSP70-S-ACE2, HSP90-S-ACE2, HSP70-AngII, and HSP90-AngII 

complexes as they depicted better interaction with S-ACE2 complex in comparison to other 

ligands.  Interestingly, HSP70-AngII-ASP/PIP/HYD's stability was found greater than HSP70-

S-ACE2-ASP/PIP/HYD. Similarly, HSP90-AngII-ASP/PIP/HYD's stability was found greater 

than HSP90-S-ACE2- ASP/PIP/HYD (Table 4). 
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Figure 4. Hypothetical protective mechanism of HSPs in SARS-CoV-2 mediated ARDS. 

The stability of HSP70-AngII-ASP/PIP/HYD complexes was confirmed by MD 

simulation analysis.  It was concluded from MD simulation findings that all complexes show 

considerable stability throughout the simulation. However, when compared with the other 

compounds, PIP is considerably more stable, followed by ASP and HYD during 30ns 

simulation. MD simulation analysis exhibited that complexes remained stable during the entire 

simulation process (Figure 1). Pharmacokinetic properties of ligands were checked in terms of 

drug-likeness and ADMET features. Ligands ASP, PIP, and HYD completely agree with 

Lipinski RO5 (Table 1).  Further,  ADMET properties were also found in a considerable range 

(Table 2). 

About 50% biotransformation of small chemical compounds is carried out with the help 

of the CYP3A4 enzyme.  Identifying the specific site of metabolism of compounds might be a 

promising step in drug discovery and development. All descriptors, including score, energy, 

COO-dist, Span2end, and 2D-SASA associated with CYP metabolism for ligands HYD, PIP, 

and HYD, were found in the specified range (Table 5).  Biological efficacy and safety of lead 

molecules is another essential concern of the drug discovery pipeline. We have calculated 

metabolically labile sites of selected ligands using the Xenosite CYP P450 prediction model 

and found their values within the reference range and comparatively better than a known 

inhibitor of HSP70. Likewise, PASS online tool was also used to identify a broad spectrum of 

biological activity of ligands. ASP, PIP, and HYD exhibited plausible biological activity in 

comparison to the known inhibitor Ver155008. HSP70/90-AngII complexes were tightly 
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bound with the selected ligands compared to the HSP70/90-S-ACE2 complexes as highlighted 

by their DockThor scores, ∆G, and Kd values. Based on the above findings, it might be possible 

that free AngII no longer available to induce cytokine pathways and thus inhibiting ARDS in 

COVID-19 patients. 

4. Conclusions 

Detailed protein-protein (S-ACE2), complex protein-protein (HSP70/90-S-ACE2), and 

complex protein-ligands interactions (HSP70/90-S-ACE2-ASP/PIP/HYD) were carried out to 

establish the most probable protective mechanism of HSPs in SARS-CoV-2 mediated ARDS 

using molecular interactions, MD simulation, and CYP450 metabolism studies. Findings 

depicted that PIP and ASP interacted more efficiently with HSP70/90-AngII compared to 

HSP70/90-S-ACE2 and formed a relatively stable complex with excellent DockThor scores, 

∆G, and Kd values. It suggests that ASP-induced HSPs and PIP may prevent cytokine storm 

by binding with the AngII, making it unavailable or less available, thereby enhancing the 

natural immunity against the SARS-CoV-2. Further, detailed residues analysis and its 

implication toward establishing structural insights will help understand the underlying 

safeguard mechanism of PIP/ASP-induced HSPs in COVID-19 patients. The study's findings 

are purely based on in silico predictions; therefore, wet-lab experimentations are required for 

validation.   
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