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ABSTRACT

In a simple representative consumer model, vaccines and drug treatments yield the same revenue for

a pharmaceutical manufacturer, implying that the firm would have the same incentive to develop either

ceteris paribus. We provide more realistic models in which the revenue equivalence breaks down for

two reasons. First, drug treatments are sold after the firm has learned who has contracted the disease;

in the case of heterogeneous consumers who vary with respect to the probability of contracting the

disease, there is less asymmetric information to prevent the firm from extracting consumer surplus with

drug treatments than with vaccines. We prove that, due to this aspect of pharmaceutical pricing, the ratio

of drug-treatment to vaccine revenue can be arbitrarily high; we calculate that the ratio is about two to

one for empirical distributions of HIV risk. The second reason for the breakdown of revenue

equivalence is that vaccines are more likely to interfere with the spread of the disease than are drug

treatments, thus reducing demand for the product. By embedding an economic model within a standard

dynamic epidemiological model, we show that the steady-state flow of revenue is greater for drug

treatments than for vaccines.
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1 Introduction

It is conventionally believed that pharmaceutical manufacturers prefer to develop drug treatments

(medicines administered after a disease has been contracted) rather than vaccines (medicines that

prevent healthy people from ever contracting the disease). Patricia Thomas, journalist and author

of a widely publicized book on the search for an AIDS vaccine (Thomas 2001), notes,

Private companies find vaccines less financially rewarding than drugs. In 2001, the
global marketplace for therapeutic drugs exceeded $300 billion, whereas worldwide
vaccine sales were only about $5 billion . . . . It is not hard to understand why major
pharmaceutical companies, capable of developing drugs and preventive vaccines,
generally invest in drugs that patients must take every day rather than shots given
only occasionally. Drug company executives have investors to answer to, after all.
(Thomas 2002)

The case of HIV is consistent with this conventional belief that pharmaceutical firms are more

inclined to invest in drug treatments than in vaccines: although it may certainly be in part due

to differing degrees of scientific difficulty, drug treatments for HIV/AIDS have been developed,

but as yet there is no HIV vaccine.

Thomas’ explanation of why firms prefer drug treatments to vaccines—that is, that drug treat-

ments are administered more frequently, allowing firms more opportunities to extract revenue—

appears to be widely held (for example, see also Rosenberg 1999). Yet from the perspective of

neoclassical economics, this explanation seems odd because a rational consumer would pay the

expected present value of the stream of benefits in an up front lump sum for the vaccine, and

thus by this argument vaccines and treatments should yield equivalent revenues.

While behavioral economics may provide reasons why people are willing to pay more for a

cure than for prevention, in this paper we examine two ways in which the view that firms are bi-

ased toward developing drug treatments can be reconciled with standard neoclassical economics.

In Section 2, we show that if one moves from a representative consumer model to a more realis-

tic model with heterogeneous consumers, revenue equivalence between vaccines and treatments
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breaks down. It is indeed realistic to suppose that consumers are heterogeneous in their ex ante

probabilities of contracting the disease. Take as an example the case of HIV: people engaging in

unprotected sex with many partners have a higher risk of contracting HIV than do those with few

partners. We show in this paper that treatments extract revenue from heterogeneous consumers

more effectively than vaccines. Since vaccines are administered before consumers contract the

disease, there is no basis on which the firm can discriminate among the consumers. If the firm

attempts to charge a high price for the vaccine, only consumers at high risk of contracting the

disease will buy it, but this segment is often only a small fraction of the population. On the

other hand, at the point when treatments are administered, the firm has better information about

consumers; in particular, the firm at least knows which consumers have the disease and which

do not. The firm can use this information to charge high prices to all consumers who contract

the disease, regardless of whether they come from the small segment of the population at high

risk or the large segment of the population at low risk.

A simple example suffices to illustrate this point. Suppose there are 100 total consumers,

ninety of whom have a ten percent chance of contracting the disease and ten of whom have a 100

percent chance. Suppose consumers are risk neutral and are willing to pay 100,000 to be cured

of the disease if they contract it. A monopolist selling a vaccine could either charge 100,000 and

sell to the ten high-risk consumers or charge 10,000 and sell to all 100 of them. Either way, the

monopolist’s revenue is 1,000,000. A monopolist selling a treatment would, in expectation, sell

to the nineteen consumers contracting the disease (all ten of the high risk consumers as well as

an average of nine consumers from the low-risk group) at a price of 100,000 for a total revenue

of 1,900,000, almost twice the revenue from a vaccine.

In Section 2.2 we develop a formal model in which the probability of contracting a disease

for consumer i, xi, is a random variable with distribution function F (xi). We prove that for

any distribution with a non-trivial amount of consumer heterogeneity, a treatment yields more

revenue than a similarly effective vaccine. We prove that there exist distributions of consumer
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heterogeneity for which the ratio of treatment to vaccine revenue is arbitrarily high. While

our results are proved in the simplest possible setting in which vaccines and drug treatments

produce the exact same social benefits, given the substantial gap in revenue between the two, it

is straightforward to argue by continuity that there will exist a broad range of cases in which

the social benefit from a vaccine exceeds that from a drug treatment, yet the revenue advantage

of the drug treatment will induce the firm to develop a drug treatment rather than a vaccine. In

Section 2.3 we show how our results can be applied to estimates of two actual distributions of

expected risk in populations to bound the treatment/vaccine revenue gap. Such estimates can be

used to calculate the subsidies needed to induce firms to develop vaccines rather than treatments

where the relative social benefit of vaccines is large relative to treatments.

In Section 3 we consider a dynamic model and reveal additional disadvantages of vaccines

relative to drug treatments in terms of rent extraction. Because vaccines cause greater reductions

in disease transmission than drug treatments, it is more difficult for developers to capture the full

social benefit of their medicine. We examine the effects of disease transmission on pricing and

research and development (R&D) decisions by embedding an economic model within a standard

dynamic epidemiological model, which we use to solve for the optimal price and profits for both

vaccines and drug treatments. We show that the steady-state flow of revenue for drug treatments

is greater than for vaccines, and thus that R&D expenditures will be distorted towards drug

treatments rather than vaccines. The fraction of social benefits that the private developer of a

vaccine captures declines with disease prevalence.

Sections 2 and 3 focus on the case of private markets for pharmaceuticals; however, in

practice, governments are often large purchasers. In Section 4, we argue that if the prices the

government pays for vaccines and drug treatments are influenced by the threat point of profits

the firm could realize on the private market if bargaining breaks down, then to the extent that

vaccines are less profitable than drug treatments on the private market, they will also be less

profitable when sold to the government.
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It is worth noting that a preference for investing in drug treatments over vaccines will have

particularly detrimental consequences for developing countries. Vaccines are more suited for use

in developing countries with weak medical infrastructure: they do not require prior diagnosis;

do not need to be taken on a long term basis but instead require only a few doses; do not

typically have major side effects that need to be monitored; and can more easily be delivered

by personnel with limited medical training. As an illustration, consider that while three-quarters

of the world’s children receive a standard package of cheap, off-patent vaccines through the

World Health Organization’s Expanded Program on Immunization (Kim-Farley et al. 1992), it

is estimated that only 10,000 to 30,000 of the 25 million people infected with HIV in Africa

have access to antiretroviral therapies, at least in part due to difficulties with safe and effective

delivery of the drugs (World Health Organization 2001).

To our knowledge, our comparison of drug treatments and vaccines in the static model with

heterogenous consumers is new in the literature.1 Our analysis of the bounds on the profitability

of drug treatments relative to vaccines in Propositions 5 and 6 also represents a contribution.

One might look to the industrial organization literature for a related result since, as we argue, the

relationship between drug treatments and vaccines in our model is analogous to the relationship

between price discrimination and uniform pricing. However, the industrial organization literature

provides bounds on the social welfare from price discrimination relative to uniform pricing

(Malueg 1993) but not bounds on a monopolist’s relative profits, to which our results apply.

Our dynamic extension is based on a standard epidemiological model. In a related model,

Geoffard and Philipson (1997) show that if a vaccine is produced by firms with market power

and sold on the private market, the disease will not be eradicated in the steady state. Our work

differs because we explicitly derive the optimal monopoly price and profits for vaccines, and the
1We have become aware of contemporaneous research by Kessing and Nuscheler (2002) that is related to our

static model. Their analysis is quite different from ours since their underlying model involves income heterogeneity
rather than disease-risk heterogeneity. In addition, they consider vaccines alone rather than compare vaccines to drug
treatments.
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fraction of vaccines’ social value appropriated by developers. Furthermore, our analysis of drug

treatments, our comparison of drug treatments to vaccines, and our result that R&D expenditures

will be distorted towards drug treatments in a dynamic model are new.

2 Static Model

2.1 Homogeneous Consumers

A monopoly pharmaceutical manufacturer, called the firm, has the choice of developing alternative

medicines for a disease affecting a population of consumers. The timing of the model is given

in Figure 1. First, the firm chooses which of the alternative medicines to develop: a vaccine,

the term we give to a medicine administered before consumers contract the disease, or a drug

treatment, the term we give to a medicine administered after. To fix ideas, we will suppose the

firm’s choices are mutually exclusive: it will develop either a vaccine or a drug treatment but not

both.2 Let kj ∈ [0,∞) be the present discounted value of the fixed cost of developing medicine
j, where j = v for the vaccine and j = t for the drug treatment. Let cj ∈ [0,∞) be the present
discounted value of the cost of administering medicine j to an individual consumer. Note that the

drug treatment may be administered later in a consumer’s life than a vaccine, and so the nominal

cost of the drug treatment may be discounted more heavily than the vaccine, but such discounting

is reflected in the terms cv and ct since they are expressed as present discounted values. Let

ej ∈ [0, 1] be the efficacy of medicine j, that is, the probability that medicine j prevents the
consumer from experiencing any harm from the disease. Let σj ∈ [0, 1] be the probability that a
consumer experiences side effects from medicine j and sj ∈ [0,∞) the present discounted value
of the harm from the side effects conditional on experiencing them. Let Pj ∈ [0,∞) be the
present discounted value of the price the firm receives for medicine j.

2Given the normalizations adopted later in the paper, we will show (Propositions 4 and 9) the firm does not
prefer to develop both a vaccine and a drug treatment.
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Interpreting Pj as a net price the firm receives for medicine j allows for a consistent rep-

resentation of the legal/liability costs associated with side effects. Assuming a caveat emptor

regime in which the consumer bears the liability for harm, consumers’ willingness to pay will be

reduced by the harm they expect from side effects, and Pj will reflect a discount for this lower

willingness to pay. Assuming a caveat venditor regime in which the firm bears liability for harm,

Pj can be interpreted as the price the firm receives after subtracting off payments it makes to

consumers for damages. Other exogenous legal/liability costs can be embodied in kj if the costs

are fixed or in cj if the costs vary with the number of consumers who receive the medicine.

Before pursuing any medicine, consumer i learns the probability that he or she will contract

the disease, xi ∈ [0, 1]. To capture the notion that consumers are homogeneous, we will assume
that xi takes on a single value, which is public information for consumers and the firm.3 Whether

or not consumer i contracts the disease is represented by Bernoulli random variable di, where

di = 1 indicates i contracts the disease, an event which occurs with probability xi, and di = 0

indicates i does not contract the disease, an event which occurs with probability 1− xi. Without
loss of generality, assume di is public information, observable not only to consumer i but also to

the firm.4

As Figure 1 shows, the key difference between a vaccine and a drug treatment hinges on

when the medicine is administered relative to the realization of di. A vaccine is administered

before di is realized and a drug treatment is administered after.

Suppose consumers are risk neutral. If a consumer contracts a disease and has not had a

vaccine or does not receive a drug treatment, he or she experiences harm h ∈ [0,∞) in present
discounted value terms. Normalize the mass of consumers to unity.

3The case in which consumers are homogeneous but in which the firm does not know x is formally identical
to the case of heterogeneous consumers drawn from a distribution known to the firm. We will treat this case in
Section 2.2.

4To see that this assumption can be made without loss of generality, consider two cases. First, if the firm has
developed a vaccine rather than a drug treatment, the firm does not make any decisions conditional on di, so it is
immaterial whether it can observe di. Second, if the firm has developed a drug treatment rather than a vaccine, the
firm can indirectly observe who has contracted the disease by observing who demands the drug treatment.
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First, consider the firm’s profit from a vaccine. A consumer’s expected net surplus from a

vaccine is xihev − σvsv − Pv. That is, with probability ev the vaccine is effective and provides
a benefit to the consumer in that expected harm xih is avoided. From this benefit, the expected

harm from side effects σvsv and the price Pv have to be subtracted to yield net consumer surplus.

The profit maximizing price extracts all this surplus; hence P ∗v = xihev−σvsv. Since consumers
are of unit mass, the firm’s maximum profit from the vaccine is

P ∗v − cv − kv = xihev − σvsv − cv − kv. (1)

Next, consider the firm’s profit from a drug treatment. The consumer will only purchase

the drug treatment if he or she contracts the disease. Conditional on contracting the disease,

the consumer’s net consumer surplus from the drug treatment is het − σtst − Pt. The profit
maximizing price extracts all this surplus; hence P ∗t = het − σtst. Since consumers are of unit

mass, and a fraction xi end up contracting the disease, the firm’s maximum profit from the drug

treatment is

xi(P
∗
t − ct)− kt = xi(het − σtst − ct)−Kt. (2)

Using expressions (1) and (2), we can characterize which medicine the firm chooses to

develop.

Proposition 1. In the homogeneous consumer model, the firm strictly prefers to develop the
vaccine over the drug treatment if and only if (1) strictly exceeds (2), strictly prefers to develop
a drug treatment over a vaccine if and only if (2) strictly exceeds (1), and is indifferent if (1)
equals (2).

In view of Proposition 1, it is straightfoward to perform comparative statics analyses on the

various parameters. Ceteris paribus, the firm tends to prefer to develop a vaccine over a drug

treatment if it is cheaper to develop (i.e., kv is low relative to kt) or cheaper to produce (cv is
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low relative to ct). The firm tends to prefer a vaccine if it involves less severe side effects (σv

and sv are low relative to σt and st, respectively). The firm tends to prefer a vaccine if it is a

more effective cure (ev is high relative to et).

Obviously this model does not exhaust the list of factors that might lead the firm to prefer

vaccines over drug treatments or vice versa. However, it would be straightforward to extend the

model to consider alternative factors, and we will briefly mention a few here. First, if consumers

were assumed to be risk averse, vaccines would become relatively more profitable, since they

would provide insurance to consumers for which consumers would pay a premium. Second, the

effect of assuming consumers face liquidity constraints is less clear, depending on the nature

of the constraint assumed. If the liquidity constraint is a constraint on lifetime expenditures,

say because the consumer has access to relatively efficient credit markets, then the liquidity

constraint may bind less with vaccines than with drug treatments. To see this, recall that we

found the equilibrium price for the vaccine to be P ∗v = xihev − σvsv and for drug treatment

to be P ∗t = het − σtst. Adopting the ceteris paribus assumptions that ev = et, σv = σt, and

sv = st, it is evident that P ∗v < P ∗t for all xi < 1. Hence, conditional on contracting the disease,

total payments are lower with vaccines. This type of lifetime liquidity constraint would bias

the firm in favor of vaccines. If, on the other hand, the liquidity constraint were a per-period

constraint, say because the consumer does not have access to credit, then the liquidity constraint

may bind less with drug treatments since the total payment with drug treatments may be spread

out in installments (with a payment for each separate treatment) whereas the total payment for

the vaccine would need to be paid in a lump sum at the time the vaccine is administered. This

type of liquidity constraint would bias the firm in favor of drug treatments.

The conclusions drawn from Proposition 1—that is, that the firm prefers cheaper, more

effective medicines associated with fewer side effects—are both intuitive and well-known. To

focus on the more subtle issues that are the focus of this paper, we will normalize certain

variables so that the firm is indifferent between developing vaccines and drug treatments in the
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homogeneous consumer model. In particular, throughout the remainder of the paper, we will

normalize kj = cj = σj = 0 and ej = 1 for j = v, t. That is, we will assume that both

medicines are costless to develop and produce, have no side effects, and are perfectly effective.

The following revenue-equivalence result for the case of homogeneous consumers is an immediate

corollary of Proposition 1.

Proposition 2. Assume kj = cj = σj = 0 and ej = 1 for j = v, t. Then the firm is indifferent
between developing the vaccine and the drug treatment in the homogeneous consumer model.

We will show in the next subsection that drug treatments are more profitable than vaccines

in a heterogeneous consumer model.

2.2 Heterogeneous Consumers

In this subsection, we will adopt the preceding model with one modification. As before, consumer

i learns the probability that he or she will contract the disease, xi ∈ [0, 1], before pursuing any
medicine. Now, however, we assume xi is a random variable distributed according to a nontrivial

cumulative distribution function F (xi). Each consumer in the population has a type given by

an independent draw from this distribution. Variable xi is private information for the consumer;

the firm only knows the distribution from which xi is drawn. We are attempting to capture the

fact that the consumer’s background and/or actions put him or her into a risk category that he or

she can observe more accurately than can outsiders. For example, engaging in unprotected sex

with multiple partners or in intravenous drug use would put a person at higher risk of contracting

HIV, but such behaviors would be difficult for a firm to monitor accurately enough to be able to

charge a discriminatory price. Likewise, frequenting mosquito-infested tropical regions increases

the chance of contracting malaria, but again may be difficult to monitor accurately.

Normalize kj = cj = σj = 0 and ej = 1 for j = v, t as before. That is, both medicines are

costless to develop and produce and both are perfectly effective. These normalizations allow us

to concentrate on the revenue generated by each medicine in a heterogeneous consumer model.
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Consider first the firm’s profit maximization problem if it decides to develop a vaccine. Given

that consumers’ types xi are private information, the firm is forced to charge a uniform price.

Since consumers are risk neutral, consumer i will buy the vaccine if the price Pv is less than

the expected harm from the disease, hxi, which represents i’s probability xi of contracting the

disease times the harm h from the disease conditional on contracting it. Thus there exists a cutoff

type x̂v = Pv/h such that consumer i weakly prefers to buy if and only if xi ≥ x̂v. The firm’s
expected revenue from the vaccine, also equal to its profit given the assumption of zero costs,

is
R 1
x̂v
PvdF (xi). Substituting Pv = hx̂v and rearranging, the firm’s profit from the vaccine is

hx̂v[1−F (x̂v)]. The firm will choose x̂v, which is equivalent to choosing Pv, to maximize profit;
thus, we can write the monopoly profit from vaccine as

Πv = max
x̂∈[0,1]

{hx̂[1− F (x̂)]} . (3)

Next consider the firm’s profit maximization problem if it decides to develop a drug treatment.

Any consumer who has contracted the disease (i such that di = 1) would be willing to pay a price

up to the avoided harm h. The firm’s optimal price for the drug treatment fully extracts consumer

surplus: P ∗t = h. Of course consumers will only pay Pt if they happen to contract the disease,

which occurs for consumer i with probability xi. The maximum revenue (and, equivalently, the

maximum profit) from the drug treatment is therefore

Πt =

Z 1

0

hxidF (xi) = hE(xi), (4)

where E(·) is the expectations operator.
Before formally examining the profits from the vaccine, Πv, and the drug treatment, Πt,

we can gain intuition by analyzing the graphical illustration in Figure 2. The vaccine involves

charging a uniform price to all consumers. A price of hx̂, for example, will induce only those

consumers with xi ≥ x̂ to purchase, so total revenue (and profit) would be given by the price
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hx̂ times the mass of consumers in [x̂, 1], which graphically is the probability-weighted area of

rectangle B in the figure. Of course the firm would choose the price optimally, so Πv can be seen

in the figure as the rectangle B of greatest probability-weighted area that can be inscribed in the

larger triangle ABC. On the other hand, Πt is the probability-weighted area of the triangle ABC

itself. To see this, note each type xi pays h for the drug treatment conditional on contracting

the disease, which occurs with probability xi, thus producing an expected revenue of hxi for

each consumer. Integrating over consumers with respect to their density gives revenues (and,

equivalently, profit) Πt. Combining these figures, we can see Πt exceeds Πv by the probability-

weighted area of A plus C. No matter how B is inscribed, triangles A and C will have positive

area, and so Πt > Πv. Formally, we have the following proposition, proved in the Appendix.

Proposition 3. If the population of consumers with a positive probability of contracting the
disease is nontrivially heterogeneous (that is, at least two distinct subintervals of (0, 1] have
positive measure), then Πt > Πv. Hence the firm’s profit from developing a drug treatment is
higher than from developing a vaccine.

A few remarks about the proposition are in order. First, note that the proposition holds for

general distributions, including discrete, continuous, and mixed. Second, note that a two point

distribution in which one of the points is xi = 0 is effectively homogeneous, because the relevant

population for revenue considerations includes only those consumers with a positive probability

of contracting the disease, and this relevant population would in this case then have a single-point

distribution.

Further intuition for Proposition 3 can be obtained by reconsidering the problem of medicine

choice in terms of price discrimination. A vaccine constrains the firm to charge a uniform price

both from an ex ante and an ex post perspective. A drug treatment also constrains the firm

to charge a uniform price from an ex post perspective; that is, all consumers who contract the

disease pay the same price. From an ex ante perspective, however, consumers’ expected payments

for a drug treatment are not uniform. High risk consumers will pay for the drug treatment with

high probability, thus leading to a high expected payment from an ex ante perspective; the
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opposite is true for low risk consumers. A drug treatment tailors the ex ante expected price to

the value consumers place on avoiding the disease. From an ex ante perspective, drug treatments

effectively allow the firm to engage in third degree price discrimination, wherease vaccines result

in a uniform pricing situation. It is a general result in the industrial organization literature that

monopolists are able to extract more rent from consumers using third degree price discrimination

than using uniform prices (see, e.g., Varian 1989), just as illustrated by the firm considered here.

We have implicitly assumed that the firm develops one of the two medicines but not both.

Given the normalization kv = kt = 0, implying that the medicines are costless to develop, it might

be thought the firm could do better by developing both and using them in a complicated mixed-

bundling scheme. In fact, as the next proposition shows, the firm does not prefer to develop

both, justifying our focus on exclusive development. The proof of Proposition 4, provided in

the Appendix, relies on the fact that the firm extracts 100 percent of social welfare with a drug

treatment, so a vaccine would provide no additional benefit.

Proposition 4. The firm does not strictly prefer developing both a drug treatment and a vaccine
to developing a drug treatment alone.

We have shown that the firm earns more revenue from drug treatments than from vaccines,

raising the question of how much more revenue drug treatments can extract. We will answer

this question in a series of propositions, starting with the case in which xi is a discrete random

variable of arbitrary form, and building from there.

Suppose that consumers fall into R risk classes indexed by r = 1, . . . , R. Within each risk

class r, consumers have the same probability xr of contracting the disease. Consumers observe

their risk class, but the firm cannot. We will arrange the risk classes without loss of generality

such that 0 ≤ x1 ≤ · · · ≤ xR ≤ 1. Let mr ∈ (0, 1) be the mass of consumers in risk class r
and normalize the mass of the total population such that

PR
r=1mr is equal to one. Note that this

setup captures the case in which an individual i’s probability of contracting the disease xi is a

discrete random variable of arbitrary form. The next proposition shows that the number of risk
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classes determines a tight upper bound on the amount the profit from a drug treatment exceeds

that from a vaccine, and this proposition will serve as a useful building block for subsequent

results.

Proposition 5. For any ² > 0, there exist distributions of consumers in R risk classes such that
Πt/Πv > R− ². That is, we can find distributions of consumers in R risk classes such that the
profit from a drug treatment can be made arbitrarily close to R times the profit from a vaccine.
Moreover, R is an upper bound on Πt/Πv.

In the proof of Proposition 5, contained in the Appendix, we construct a distribution of

consumers in which the masses of the R risk classes {mr}Rr=1 decline geometrically. Further,
we specify probabilities {xr}Rr=1 such that the firm earns the same profit whether it sells to all
consumers at a low price hx1, to all consumers but the lowest risk class at a higher price hx2,

etc., on up to selling to the highest risk class alone at price hxR.

We note that Proposition 5 has a straightforward corollary in the simplest possible case of

consumer heterogeneity, that is, the two type case with a low risk class and a high risk class.

The example from the Introduction (with 100 consumers, 90 of whom have a ten percent chance

of contracting the disease and ten of whom have a 100 percent chance) is such a case. As noted

in the Introduction, the drug treatment produces higher profit than the vaccine by a factor of 1.9.

Proposition 5 implies that a drug treatment can be as much as twice as profitable as a vaccine

in the two type case, but no more. The example given in the Introduction approaches our bound

of two, and we can come closer to the bound with examples in which the size of the high risk

pool as well as the probability of contracting the disease in the low risk pool are reduced. For

example, consider a population of 100 consumers, 99 of whom have a one percent chance of

contracting the disease, and one of whom has a 100 percent chance. Then it can be shown, given

the assumption from the Introduction that the harm from the disease is 100,000, that a vaccine

produces a profit of 100,000 while drug treatment produces a profit of 199,000, very nearly twice

as much profit.

The two type case provides important insights into the settings in which firms will strongly
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prefer drug treatments to vaccines. Skewed distributions in which there exist a large segment of

the population with a very small probability of contracting the disease and a small segment of

the population with a large probability of contracting the disease will create the largest relative

incentives for the firm to develop drug treatments.

An obvious corollary of Proposition 5 is that there exist distributions of consumer types such

that drug treatments are arbitrarily more profitable than vaccines. This can be seen by taking

the limit as R approaches infinity in the proposition. Stated formally, we have the following

proposition.

Proposition 6. For any finite bound M ∈ (0,∞), there exist distributions of consumers such
that Πt/Πv > M .

By themselves, Propositions 3 and 6 do not raise public policy concerns. The propositions

were proved under maintained assumptions which guarantee that the social benefit from vaccines

and drug treatments are equal, so no problems arise if the firm is biased toward developing drug

treatments because of better rent extraction properties. Given the substantial profit advantage that

drug treatments potentially have over vaccines, it is easy to see by continuity that there will exist

a broad range of cases in which vaccines are socially more beneficial than drug treatments and yet

the firm is still biased toward developing drug treatments. Because a vaccine is administered at

an early stage, it may be more effective in preventing the disease’s spread, may reduce the harm

the disease causes an individual, and indeed may increase the probability of curing the disease

as compared to a drug treatment. Yet, if the revenue extraction advantage of a drug treatment

is great enough, the firm will still have an incentive to develop a drug treatment rather than a

vaccine.

Our model has considered the case where the only source of heterogeneity is in consumers’

probability of contracting the disease. More realistically, people may differ in willingness to

pay for a given reduction in their probability of infection either because they differ in income
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or because they differ in the value they attach to prevention of the disease.5 It is possible to

imagine bivariate distributions for which vaccines could be more profitable than drug treatments.

Suppose the chance of infection is perfectly inversely correlated with the willingness to pay for

reductions in probability of infection, for example because individuals who are unconcerned about

their health are the most likely to have multiple partners and the least likely to be willing to pay

for per-unit reductions in the chance of infection. In this case, all consumers would have the

same willingness to pay for a vaccine and the firm could extract all surplus with a vaccine but

not with a drug treatment. However, this is unlikely, and we would conjecture that for most

reasonable bivariate distributions of chance of infection and willingness to pay, vaccines will

offer less opportunity for price discrimination than drugs.

2.3 Applications to Empirical Distributions

In this section, we apply our theoretical results to estimates of actual distributions of HIV risk

in certain populations. We consider two examples, one using a nationally representative sample

but containing only crude risk information, and another using a non-representative sample but

containing more detailed information on risk. The first example uses nationally-representative

data from the United States Center for Disease Control National Health and Examination Survey

(NHANES) in 1999-2000 to divide the population into risk classes based on the number of sexual

partners in a twelve month period.6 The second example involves a smaller population for which

we have more detailed data, data from a study of projected HIV risk which surveyed a random

sample of individuals living in poor neighborhoods with high drug use in Houston, Texas (Bell

and Trevino 1999). The result from the previous subsection that there are theoretical distributions

of risk for which drug treatments generate considerably more revenue than vaccines is borne out
5Kessing and Nuscheler (2002) analyze a static model with income heterogeneity.
6We do not allow for separate risk factors based on sex of the respondent or of his or her partners and, due to

data limitations, we assume that all men who reported having male partners had no female partners (and analogously
for women with female partners).
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for the actual distributions of risk analyzed in both examples.

For our first example, assume the risk of contracting a disease from one sexual partner is φ;

thus, we treat risk of contracting the disease as a linear function of the number of sexual partners.

Assume a unit mass of consumers with distribution of sexual partners as in NHANES (1999–

2000), normalize the harm experienced conditional on contracting the disease to h = 1, and

maintain all previous normalizations (that is, that medicines are costless to develop and produce,

are perfectly effective, etc.). We will compute the revenue from a drug treatment and a vaccine

and then compare the two figures. Given the normalizations, the revenue from a drug treatment

is equal to the fraction of the population that is expected to contract the disease, which in turn

is equal to φ times the mean number of sexual partners 1.666. Thus the revenue from a drug

treatment is 1.666φ. To compute the revenue from a vaccine, we can compute (as in Table 1) the

maximum price that induces each risk class to purchase (and strictly induces higher risk classes

to purchase), and then find the highest revenue. Reading down the last column of Table 1, the

highest revenue is gained from selling to the entire population that is sexually active at price φ,

which yields 0.8991φ in revenue. Thus, the ratio of revenue from a drug treatment to revenue

from a vaccine is 1.853, so a drug treatment would generate almost twice as much revenue as a

vaccine.

In our second example, we consider a study that directly provides estimates of projected

HIV risk, Bell and Trevino (1999). The authors collected quite detailed information on 270

subjects living in poor Houston neighborhoods, including records of all the subjects’ sexual

acts over a given thirty day period. The authors used the data from this survey to parametrize

an epidemiological model of HIV risk which combines risk behaviors, prevalence rates, and

transmission probabilities. The 270 individuals in Bell and Trevino’s sample are not representative

of the U.S. population as a whole. In particular, 14 percent could be expected to develop HIV

within ten years, an order of magnitude notably higher than the national average. Assuming

a static population with no change in the prevalence of HIV within the population as well as
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no change in the risk level of new sexual partners over time, this model then allows them to

compute an empirical distribution of the ten-year projected risk of contracting HIV for the given

population. The resulting empirical distribution (based on data from Figure 1 in Bell and Trevino)

is presented in the first two columns of Table 2.

Assuming a unit mass of consumers with the same distribution of HIV risk as in Table 2,

normalizing the harm experienced conditional on contracting HIV to h = 1, and maintaining all

the other previous normalizations, we can compute the potential revenue from an HIV vaccine

and an HIV/AIDS drug treatment. The revenue from a drug treatment equals the expected number

of infected individuals times the avoided harm h = 1, or 0.1424. To compute the revenue from

a vaccine, we can compute (as in Table 2) the maximum price that induces each risk class to

purchase (and strictly induces higher risk classes to purchase), and then find the highest revenue.

Reading down the last column of the table, the highest revenue, 0.0694, is generated by charging

a price that induces the 75 percent risk class and higher to purchase. Thus the ratio of drug

treatment revenue to vaccine revenue is 2.052, so a drug treatment would again generate more

than twice as much revenue as a vaccine.

Despite the fact that the distribution of HIV risk in Bell and Trevino’s sample is likely to

be less skewed than in the U.S. population as a whole, it is still somewhat skewed. Only nine

percent of the mass of consumers have risks at or above 75 percent. Serving only these high risk

consumers with a vaccine leaves a large mass of consumers from lower risk classes unserved,

and thus leaves a great deal of unclaimed consumer surplus.

3 Dynamic Model

In this section we show that drug treatments are more profitable than vaccines even with a

homogeneous population if vaccines cause greater reductions in disease transmission than drug

treatments. Vaccines typically reduce disease transmission more than drug treatments for two
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reasons. First, people often spread the disease before receiving treatment. For example, much

transmission of HIV is believed to take place during the first few months of an individual’s

infection;7 during this “window period,” viral loads (and thus transmission rates) are high,8 but

the individual is not producing enough antibodies to test positive on standard HIV tests, and thus

will not seek drug treatments such as the Highly Active Antiretroviral Treatments (HAARTs).

Second, drug treatments sometimes treat symptoms rather than actually curing the disease, so

even if a patient receiving a treatment is experiencing no harm from the disease, he or she may

still be a carrier.

To examine the effect of disease transmission on pricing and R&D expenditure decisions, it is

useful to embed the economic model within a standard dynamic epidemiological model. We will

consider a non-fatal disease since this simplifies modeling by allowing us to consider a constant

population. Assume that people are born into the population at rate δ and that both infected

and uninfected individuals die at rate δ as well. Let S, I, and V represent the fractions of the

population that are susceptible, infected, and vaccinated. Normalizing the mass of the consumer

population to unity, S + I + V = 1. If no vaccine exists, V = 0 and S + I = 1.

The rate at which people become newly infected is βIS, where β depends on the rate at

which susceptibles contact infecteds and the proportion of those contacts which lead to new

infections. Let ξ denote the fraction of newborns who are vaccinated.9 For now, we treat ξ as a

parameter; later, we will solve for the equilibrium value of ξ and substitute that value back into

this epidemiological model.

The rate of change of the susceptible population is equal to the birth rate times the non-
7Wawer et al. (2003) report that in their study approximately half of all HIV transmission was estimated to occur

within the first five months of an individual’s seroconversion (seroconversion usually takes place two to six weeks
after acquisition of HIV).

8Wawer et al. (2003) show the rate of HIV transmission per coital act is highest in the first five months after
seroconversion (0.0081 per coital act).

9Given the Poisson structure of the model, without loss of generality we can treat all vaccinations as if they are
given to newborns.
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vaccination rate, 1− ξ, minus the loss of susceptibles to infection or death:

Ṡ = δ(1− ξ)− βIS − δS. (5)

The rate of change of the infected population is

İ = βIS − δI (6)

and the rate of change of the vaccinated population is

V̇ = δξ − δV. (7)

There is a trivial steady state in which I∗ = 0 and S∗ = 1 − V ∗, but this is unstable for
ξ < 1 − δ/β. Setting Ṡ = İ = V̇ = 0 in equations (5) through (7) gives the non-trivial steady

state

S∗ = δ/β, V ∗ = ξ, I∗ = 1− ξ − δ

β
(8)

for ξ < 1− δ/β. For brevity we will define λ = δ/β. This term can be interpreted as the latent

proportion of healthy individuals in the steady state before a vaccine is introduced, as can be

seen by setting ξ = 0 in the equation for I∗ in (8). With this notation, the steady-state rate at

which new infections will occur if a vaccine is developed is thus

βI∗vS
∗
v = δ(1− ξ − λ) (9)
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and the steady-state rate at which new infections will occur if a drug treatment is developed is

βI∗t S
∗
t = δ(1− λ). (10)

We wish to consider a firm’s incentives for developing either a vaccine or a drug treatment.

(We will show below in Proposition 9 that the firm will not choose to develop both.) Once

developed, we assume that either medicine can be produced at zero cost. We suppose that a person

taking a vaccine does not contract the disease and is unable to transmit the disease to others. We

assume that a single dose of a drug treatment perfectly relieves all symptoms permanently but

still allows the treated individual to transmit the disease to others. These assumptions are clearly

extreme, but results will be qualitatively similar as long as drug treatments interfere less with

disease transmission than do vaccines.

We will consider the case as the discount rate goes to zero so that consumers only care about

their probability of contracting the disease (not when they will contract it) and the firm wants to

maximize the steady-state flow of revenue; this allows us to abstract from transitional dynamics.

Assume consumers are risk neutral, and define h to be the fixed amount a consumer will be

willing to pay in order to avoid infection.

Revenue (and profit since production costs have been normalized to zero), Πj , will equal

price, Pj , multiplied by quantity sold, Qj , where j = v if a vaccine is developed and j = t if a

drug treatment is developed. Let Wj denote social welfare. Let P ∗j , Q∗j , Π∗j , and W ∗j denote the

equilibrium price, quantity, profit, and social welfare in the steady state, respectively.

We proceed by solving for the firm’s profit-maximizing prices P ∗v and P ∗t , using these prices

to compute the steady-state flow profits Π∗v and Π∗t , and then comparing these profits to determine

which medicine is more profitable in the steady state. The results are contained in a series of

propositions.

Proposition 7. In the steady state of the dynamic model with a drug treatment, the equilibrium
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price is P ∗t = h, quantity is Q∗t = δ(1 − λ), flow profit is Π∗t = hδ(1 − λ) and flow welfare is
W ∗t = hδ(1− λ).

The proof of Proposition 7 is straightforward. The firm sets a price extracting all the surplus from

infecteds, P ∗t = h. Since we assumed that one dose of the drug treatment permanently relieves all

symptoms, only newly infected consumers will purchase the drug treatment. In equilibrium, all

newly infecteds buy the drug treatment at price P ∗t = h, so by equation (10), Q∗t = δ(1−λ). The
resulting flow profit is thus Π∗t = P ∗t Q∗t = hδ(1 − λ). The social benefit of the drug treatment

is that all newly infected individuals are completely relieved of the harm from the disease h, so

W ∗t = hδ(1− λ).

It is more difficult to derive a rational-expectations equilibrium in the vaccine case because

of the externality involved. The more consumers who are vaccinated, the lower the disease

prevalence, thus reducing the incentives of consumers to be vaccinated. We will solve for the

equilibrium of this system, drawn in Figure 3. The diagram is drawn for a given vaccine price

Pv; below we will solve for the profit maximizing Pv. The solid line AA0 represents consumer

demand for vaccines as a function of the the overall infection level and the given price, Qv(Iv, Pv).

As the line indicates, there is a cutoff level of infection prevalence Î such that no consumer buys

the vaccine below this cutoff, all consumers buy the vaccine above this cutoff, and consumers

are indifferent exactly at this cutoff so that the fraction of newborns obtaining the vaccine is

indeterminate. The dotted line BB0 represents the infection level as a function of the quantity

of vaccine consumed, Iv(Qv), which comes from the epidemiological model; in particular, this

follows directly from the equation for I∗ in (8). The equilibrium quantity as a function of price

is given by the intersection of AA0 and BB0. Note that an increase in price shifts AA0 to the

right, resulting in a lower intersection point and thus a lower equilibrium quantity—the familiar

tradeoff for a monopolist. The next step is to compute the profit-maximizing price. The result

of these calculations is provided by Proposition 8, proved in the Appendix.

Proposition 8. In the steady state of the dynamic model with a vaccine, equilibrium price is
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P ∗v = h(1−
√
λ), quantity is Q∗v = δ(1−√λ), flow profit is Π∗v = hδ(1−

√
λ)2, and flow welfare

is W ∗v = hδ(1−
√
λ).

In view of Propositions 7 and 8, we can compare the firm’s incentives to develop a drug

treatment versus a vaccine:

Proposition 9. In the steady state of the dynamic model, the firm’s profit is higher with a drug
treatment than a vaccine. The firm appropriates all the social surplus with a drug treatment but
only a fraction 1−√λ with a vaccine. The firm does not strictly prefer developing both a drug
treatment and a vaccine to developing a drug treatment alone.

The proof is a simply corollary of Propositions 7 and 8; the details are provided in the Appen-

dix. The drug treatment allows the firm to appropriate 100 percent of the social benefits since

consumers can be charged their maximum willingness to pay and there are no externalities. With

a vaccine, the firm does not serve all susceptibles since this would eradicate the disease and

eliminate future demand. Instead, the vaccine is priced such that only a fraction of susceptibles

are served. The unvaccinated susceptibles obtain a positive externality from other’s vaccinations,

and this benefit is not appropriated by the firm.

As Proposition 9 states, since the firm appropriates all social surplus with a drug treatment,

there is no additional benefit from also developing a vaccine. This justifies our implicit assump-

tion that the firm develops one medicine or the other but not both.

Analogous to the result in the static model of Section 2, we are able to obtain the result in the

present dynamic model that the ratio of profit from a drug treatment to the profit from a vaccine

is unbounded. The key parameter is λ, which recall is interpreted as the initial proportion of

healthy individuals prior to the introduction of the vaccine. A disease that is initially quite rare

can be represented by the limit as λ approaches one. For such diseases, a drug treatment is

particularly profitable for the firm relative to a vaccine, and the fraction of social benefits the

vaccine producer is able to appropriate is particularly small.

Proposition 10. In the limit as the initial prevalence of the disease approaches zero, the ratio
of profit from drug treatment to vaccine grows without bound, i.e., limλ→1(Π∗t/Π

∗
v) = ∞, and

the ratio of profit to social welfare from a vaccine goes to zero, i.e., limλ→1(Π∗v/W
∗
v ) = 0.
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There is reason to think that, in practice, externality benefits may be quite large relative to

direct benefits. For example, in a randomized evaluation of a project in Kenya, Miguel and

Kremer (2003) find that school-based mass treatment with deworming drugs created substantial

externalities among both untreated students in the treatment schools and among children in neigh-

boring schools; the share of disease burden averted due to externalities in their study is estimated

at about 76 percent.10

4 Government Purchases

The previous sections have focused on the case of pharmaceutical sales on private markets.

However, at least in the case of vaccines, governments are the main purchasers, not private

parties. We argue in this section that our results are still applicable to the case of government

procurement as long as price negotiations between the firm and the government are influenced

by the threat point of what profits the firm would realize with private sales if negotiations with

the government broke down.

Suppose the firm and government engage in Nash bargaining over the sale of medicine j.

Assume they bargain after the firm has decided which medicine (j = v for vaccine, j = t for

drug treatment) to develop and has sunk its investment in R&D. For ease of comparison, we will

assume that this sunk cost is the same for either medicine. Assume the government’s objective

is to maximize consumer surplus and the firm’s is to maximize profit.11

Given these objectives, the “pie” over which the parties bargain equals social welfare at

socially efficient prices, denoted W̃j . Note the difference between W̃j and Wj defined earlier:

W̃j is social welfare when the medicine is consumed at the socially efficient level, whereas Wj

is social welfare given the amount of medicine that will be consumed at monopoly prices. Let
10See also the theoretical analysis of vaccine externalities in Boulier, Datta, and Goldfarb (2002).
11Assuming alternatively the government’s objective is to maximize social welfare, with equal weights given to

producer and consumer surplus, Nash bargaining would trivially result in all surplus being allocated to the firm.
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Πj be the monopoly profit and CSj the consumer surplus from the private sale of medicine j at

monopoly prices. Let Φj be the firm’s threat point in Nash bargaining and Γj be the government’s.

Then the Nash bargaining formula yields the following expression for the firm’s surplus:

1

2
(W̃j + Φj − Γj). (11)

It is plausible to assume that the firm’s threat point is given by what it would earn if it sold to

the private market rather than the government.12 Under this assumption, Φj = Πj and Γj = CSj .

Substituting these threat points into equation (11), we have that the firm prefers to develop a

drug treatment to a vaccine if and only if (W̃t + Πt − CSt)/2 > (W̃v + Πv − CSv)/2, or upon
rearranging,

Πt −Πv > W̃v − W̃t − CSv. (12)

We have substituted CSt = 0 in condition (11), consistent with the fact that the firm ends up

extracting all consumer surplus in both the static model of Section 2 and the dynamic model of

Section 3.

Condition (12) shows that, even if medicines are procured by the government, there is a wedge

between social and private incentives that possibly distorts the firm’s development decision. There

is a range of cases in which W̃v > W̃t, so it is socially beneficial for the vaccine to be developed,

yet (12) holds so the firm instead develops the drug treatment. This range of cases may be

broad for two reasons: as shown in Propositions 6 and 10, the ratio Πt/Πv is unbounded, and

so the left-hand side of (12) may be large; furthermore, subtraction of the term CSv reduces the

right-hand side of (12) below W̃v − W̃t.
12There are of course other possibilities. For example, the government could hypothetically refuse to grant approval

for private sales of the medicine in the event of bargaining breakdown, implying Φj = 0. However, at least in the
United States (by far the largest single market), once approval is granted the U.S. government would not stop private
sales of the product.
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Our conclusions are essentially an instance of the familiar hold-up problem (Williamson

1975). The firm decides which medicine to develop prior to negotiating with the government.

Recognizing that it does not appropriate all the surplus in bargaining, the firm may distort its

decision to appropriate more surplus; thus the firm is concerned over how profitable the medicines

are relative to each other in the threat point, i.e., on the private market.

The analysis can be repeated assuming that vaccines are procured by the government but drug

treatments are sold on the private market. The firm would then compare the Nash bargaining

surplus from the vaccine (W̃v +Πv −CSv)/2 to the drug treatment profit Πt. After rearranging
and noting Wv = Πv + CSv, we see that the firm would prefer to develop a drug treatment to a

vaccine if and only if

Πt −Πv > 1

2
(W̃v −Wv). (13)

The right-hand side of (13) is the difference between social welfare given the socially efficient

level of consumption and social welfare at the monopoly-price level of consumption, divided by

two. The left-hand side is again the relative profit advantage of a drug treatment, which all our

preceding results were directed toward showing can be large. Again, we have the result that the

firm may be biased against developing a vaccine even though vaccine development may be more

socially desirable.

One policy implication that emerges from this section is that there are advantages to the

government bargaining with the firm as early as possible in the development process, since this

will of course help protect the firm’s R&D from hold up by the government and thus enhance

investment. Our point here is that this will also encourage the firm to make the socially efficient

decision regarding which medicine to develop. In the model, if the bargain takes place before the

firm decides which medicine to develop, in equilibrium the firm will develop the vaccine precisely

when it is socially efficient to do so, i.e., when W̃v > W̃t. This provides one justification for
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advance purchase commitment programs of the type described by Kremer (2001).

5 Conclusions

Numerous potential factors could induce firms to develop a drug treatment (administered after

patients contract the disease) rather than a vaccine (administered before), or vice versa, for a given

disease. One or the other may involve “easier science,” be cheaper to produce once developed,

or have fewer or less severe side effects. The interests of both consumers and firms are likely

to be aligned concerning all of these preceding factors: that is, consumers and firms are likely

to agree that a cheaper treatment is better as is one with fewer side effects. In this paper, we

identified more subtle issues that are present even if one abstracts away from all these preceding

factors. Drug treatments turn out to be better tools to extract consumer surplus than vaccines.

• Drug treatments emerge as better rent extraction tools than vaccines in a static model since
drug treatments are administered after consumers have contracted the disease and thus the

firm has more information about individual consumer’s valuations.

• Drug treatments emerge as better rent extraction tools than vaccines in a dynamic model
if vaccines are more likely to interfere with disease transmission than are drug treatments.

Since the people who benefit from the positive externalities of vaccination do not compen-

sate the firm for the benefits they receive from the vaccine, the firm earns more revenue

from drug treatments than from vaccines.

We showed that in both the static and dynamic models, the firm can make arbitrarily higher

revenue in percentage terms with drug treatments than with vaccines. Fitting two actual estimates

of the ex ante distribution of HIV risk—one a nationally-representative survey of HIV risk, the

other a detailed survey of individuals in several poor Houston neighborhoods—into our theoretical

framework, we demonstrated the empirical relevance of our theoretical results. In both samples,
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we calculated that the revenue-extraction properties of drug treatments would allow the firm to

earn considerably more, around twice the revenue, compared to vaccines. Incorporating dynamic

considerations suggests the ratio is likely to be even larger. Given the importance of technological

advances to public health, and the particular importance of vaccines for fighting disease in

developing countries, these results suggest a justification for public policies to increase investment

in vaccine R&D.
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Appendix

Proof of Proposition 3

Define

x̂∗v = argmax
x̂∈[0,1]

{hx̂[1− F (x̂)]} .

Then, in view of equations (3) and (4),

Πt − Πv = h

Z 1

0

xidF (xi)− h
Z 1

x̂∗v
x̂∗vdF (xi)

= h

Z x̂∗v

0

xidF (xi) + h

Z 1

x̂∗v
(xi − x̂∗v)dF (xi). (A1)

Both terms in expression (A1) are nonnegative. There cannot be a measure one of consumers
at x̂∗v by maintained assumption. Thus there must be a positive measure on either a subset of
(0, x̂∗v), in which case the first term in (A1) is positive, or on a subset of (x̂∗v, 1], in which case
the last term in (A1) is positive. In either case, Πt −Πv > 0. Q.E.D.

Proof of Proposition 4

Curing the disease generates gross social welfare hE(xi) from an ex ante perspective. This is
also the revenue from a drug treatment, and profit since costs have been normalized to zero, by
equation (4). Hence the addition of a vaccine cannot increase the firm’s profit. Q.E.D.

Proof of Proposition 5

A distribution of consumers into R risk classes involves parameters {mr}Rr=1 and {xr}Rr=1. These
2R parameters can be freely chosen to generate as high as possible a value of Πt/Πv subject to
mr ∈ (0, 1) for all r = 1, . . . , R;

PR
r=1mr = 1; and 0 ≤ x1 ≤ · · · ≤ xR ≤ 1. Let θ ∈ (0, 1/2).

Define

mr =

(
θr−1 if r > 1
1−PR−1

r=1 θ
r if r = 1.

(A2)

The definition of risk-class masses in equation (A2) produces a geometrically declining sequence.
As is easily seen, this definition respects the constraints mr ∈ (0, 1) for all r = 1, . . . , R andPR

r=1mr = 1. Next, we set the risk-class probabilities {xr}Rr=1. We will set them so that the
firm makes the same revenue regardless of which risk class it decides to target with its vaccine
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pricing. Specifically, we will set xR = 1 and define the rest, {xr}R−1r=1 , recursively by

hxr

RX
i=r

mi = hxr+1

RX
i=r+1

mi. (A3)

The left-hand side of equation (A3) is the revenue (and profit) from charging a price hxr and
selling the vaccine to risk classes r and higher. The right-hand side is the revenue (and profit)
from charging a price hxr+1 and selling to risk classes r + 1 and higher. As is easily seen, our
definition of {xr}Rr=1 respects the constraint 0 ≤ x1 ≤ · · · ≤ xR ≤ 1. From equation (4), we
have Πt =

PR
r=1 hmrxr. By construction implicit in (A3), we have Πv = hx1; that is, it is

weakly most profitable to charge hx1 for the vaccine and sell to all consumers. Thus

Πt
Πv

=

PR
r=1 hmrxr
hx1

= m1 +
RX
r=2

mrxr
x1

= m1 +
RX
r=2

mr

mr + · · ·+mR

= 1−
R−1X
r=1

θr +
RX
r=2

θr−1

θr−1 + · · ·+ θR−1
.

We provided an argument previously for the first line. The second line holds by simple algebra.
The third line holds since it is equally profitable to sell the vaccine to all consumers at price hx1
or to consumers in risk classes r and above at price hxr, so that hx1 = hxr(mr + · · · +mR),
implying xr = x1/(mr+· · ·+mR). The last line holds by substituting for {mr}Rr=1 from equation
(A2). Taking limits,

lim
θ→0

µ
Πt
Πv

¶
= 1− 0 +

RX
r=2

1 = R.

This shows that for any ² > 0, and for the definitions of the parameters in (A2) and (A3), we
can find θ > 0 such that Πt/Πv > R− ². To prove Πt/Πv ≤ R for all distributions of consumers
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into R risk classes, note

RΠv = R max
r∈{1,... ,R}

(
hxr

Ã
1−

r−1X
i=1

mi

!)
≥ R max

r∈{1,... ,R}
{hxrmr}

≥
RX
r=1

hxrmr

= Πt.

Hence Πt/Πv ≤ R. Q.E.D.

Proof of Proposition 8
As stated in the text, for a given price Pv, the rational-expectations equilibrium vaccine quantity
is given by the intersection of lines AA0 and BB0 in Figure 3. First we will compute the vaccine
demand correspondence AA0. The probability a newborn will ever become infected if he or
she is not vaccinated is βIv/(βIv + δ). Thus a consumer’s maximum willingness to pay for
the vaccine is hβIv/(βIv + δ). Consumers are indifferent between buying a vaccine and not
if Pv = hβIv/(βIv + δ), an equation which can be inverted to yield the cutoff infection level
Î = δPv/[β(h− Pv)]. Thus AA0 is given by

Qv(Iv, Pv) =


0 if Iv < Îv
[0,1] if Iv = Îv
1 if Iv > Îv.

(A4)

Next, we will compute BB0, the infection level from the epidemiological model. By the equation
for I∗ in (8), we have Iv = 1− ξ − λ. But Qv = δξ, implying

Iv(Qv) = 1− Qv
δ
− λ. (A5)

Solving (A4) and (A5) simultaneously yields

Qv = δ

∙
1− λ

µ
1 +

Pv
h− Pv

¶¸
. (A6)

Maximizing flow profit PvQv with respect to Pv, where Qv is given by (A6) yields a first-order
condition, which can be expressed as

P 2v − 2Pvh+ h2(1− λ) = 0.
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This is a quadratic equation with two solutions: Pv = h(1+
√
λ) and Pv = h(1−

√
λ). The first

solution exceeds h and thus would result in zero demand. We will thus use the second solution,
P ∗v = h(1 −

√
λ). By (A6), Q∗v = δ(1 − √λ). Hence Π∗v = P ∗vQ∗v = hδ(1 −

√
λ)2. The flow

social benefit from the vaccine, W ∗v , equals the foregone harm from the disease h times the flow
of newborns δ times the reduction in the proportion of infecteds in the population. From the
equation for I∗ in (8), the proportion of the population that is infected in the steady state with a
vaccine is 1− ξ−λ and without a vaccine is 1−λ, the latter found by substituting ξ = 0 in (8).
Thus,

W ∗v = hδξ

= hδ
Q∗v
δ

= hδ(1−
√
λ).

Q.E.D.

Proof of Proposition 9

We have

Π∗t = hδ(1− λ)

= hδ(1−
√
λ)(1 +

√
λ)

> hδ(1−
√
λ)(1−

√
λ)

= Π∗v.

The first line holds by Proposition 7, the second line by simple algebra, the third line by
√
λ > 0

and the fourth by Proposition 8. Thus Π∗t/W ∗t = 1 but Π∗v/W ∗v = 1 − √λ. To complete the
proof, note 100 percent of gross consumer surplus is extracted by the drug treatment, so there is
no additional benefit from also developing a vaccine. Q.E.D.

Proof of Proposition 10

To compute the first limit in the proposition,

lim
λ→1

Π∗t
Π∗v

= lim
λ→1

hδ(1− λ)

hδ(1−√λ)2

= lim
λ→1

(1−√λ)(1 +√λ)
(1−√λ)(1−√λ)

= lim
λ→1

1 +
√
λ

1−√λ
= ∞.
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The first line holds by the expressions for profits in Propositions 7 and 8 and the remainder by
simple algebra. The second limit in the proposition is limλ→1(Π∗v/W

∗
v ) = limλ→1(1−

√
λ) = 0,

where the first equality holds by Proposition 9. Q.E.D.
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Table 1: Calculations of Vaccine Revenue for NHANES Sample

Fraction of Maximum
Number of Population in Price Inducing Quantity Vaccine
Partners (n) Risk Class Purchase (= φn) Sold Revenue

0 0.1007 0φ 1.0000 0.0000φ
1 0.7232 1φ 0.8991 0.8991φ
2 0.0845 2φ 0.1759 0.3518φ
3 0.0369 3φ 0.0914 0.2742φ
4 0.0162 4φ 0.0545 0.2180φ
5 0.0128 5φ 0.0383 0.1915φ
6 0.0075 6φ 0.0255 0.1530φ
7 0.0008 7φ 0.0180 0.1260φ
8 0.0033 8φ 0.0172 0.1376φ
9 0.0008 9φ 0.0139 0.1251φ
10 0.0029 10φ 0.0131 0.1310φ
12 0.0012 12φ 0.0102 0.1224φ
13 0.0004 13φ 0.0090 0.1170φ
14 0.0004 14φ 0.0086 0.1204φ
15 0.0025 15φ 0.0082 0.1230φ
19 0.0004 19φ 0.0057 0.1083φ
20 0.0025 20φ 0.0053 0.1060φ
27 0.0004 27φ 0.0028 0.0756φ
30 0.0004 30φ 0.0024 0.0720φ
50 0.0004 50φ 0.0020 0.1000φ
100 0.0004 100φ 0.0016 0.1600φ
111 0.0004 111φ 0.0012 0.1332φ
150 0.0004 150φ 0.0008 0.1200φ
255 0.0004 255φ 0.0004 0.1020φ
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Table 2: Calculations of Vaccine Revenue for Bell and Trevino Sample

Fraction of Maximum
Ex ante Population in Price Inducing Quantity Vaccine
Risk Class Risk Class Purchase Sold Revenue

0.0000 0.5852 0.0000 1.0000 0.0000
0.0625 0.1296 0.0625 0.4148 0.0259
0.1250 0.0667 0.1250 0.2852 0.0356
0.1875 0.0444 0.1875 0.2185 0.0410
0.2500 0.0185 0.2500 0.1741 0.0435
0.3125 0.0037 0.3125 0.1556 0.0486
0.3750 0.0185 0.3750 0.1519 0.0569
0.4375 0.0185 0.4375 0.1333 0.0583
0.5000 0.0185 0.5000 0.1148 0.0574
0.5625 0.0037 0.5625 0.0963 0.0542
0.6250 0.0000 0.6250 0.0926 0.0579
0.6875 0.0000 0.6875 0.0926 0.0637
0.7500 0.0148 0.7500 0.0926 0.0694
0.8125 0.0037 0.8125 0.0778 0.0632
0.8750 0.0148 0.8750 0.0741 0.0648
0.9375 0.0148 0.9375 0.0593 0.0556
1.0000 0.0444 1.0000 0.0444 0.0444
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Figure 1:  Timing of Static Model
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Figure 2:  Geometric Comparison of Profit from Vaccine Versus Drug Treatment
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Figure 3:  Equilibrium in Dynamic Model for Given Vaccine Price
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