Next Article in Journal
Assessment of Cosmeceutical Potentials of Selected Mushroom Fruitbody Extracts Through Evaluation of Antioxidant, Anti-Hyaluronidase and Anti-Tyrosinase Activity
Previous Article in Journal
Maternal Education at Birth and Youth Breakfast Consumption at Age 15: Blacks’ Diminished Returns
 
 
Correction to J 2019, 2(2), 162-205.
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Correction

Correction: Abramov, R. The Random Gas of Hard Spheres. J 2019, 2, 162–205

by
Rafail V. Abramov
Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, 851 S. Morgan St., Chicago, IL 60607, USA
Submission received: 9 September 2020 / Accepted: 11 September 2020 / Published: 16 September 2020
In the published paper [1], we used the spatial correlation function R ( σ ) of two spheres, each of diameter σ , to construct a closure to the BBGKY hierarchy of hard spheres. In the subsequent derivation of the fluid dynamics equations in [1], we relied upon the assumption that R ( σ ) = 1 + O ( σ ) . We later discovered that R ( σ ) is the two-sphere cavity distribution function for hard spheres [2] in the constant sphere density limit, and thus is not 1 + O ( σ ) . What follows below are the necessary corrections to the relevant equations in [1].

List of Changes

  • Equation (162) and the following sentence are changed as follows:
    F ( 2 ) ( t , x , y , v , w ) e λ Θ α σ ( σ x y ) R ( 2 ) ( ( x + y ) / 2 , x y ) f ( t , x , v ) f ( t , y , w ) ,
    where R ( 2 ) depends parametrically on α and λ : R ( 2 ) = R λ , α ( 2 ) , and, in the case of a spatially nonuniform distribution, is also generally a function of the midpoint between x and y .
  • The sentence following Equation (165) is changed as follows:
    “We can apply the formula above to our set-up by setting z 1 = ( x , v ) , z 2 = ( y , w ) , F = F ( 2 ) , ψ = e λ Θ α σ ( σ x y ) R ( 2 ) ( ( x + y ) / 2 , x y ) , and p 1 = p 2 = F ¯ ( 1 ) from Equation (156).”
  • Equation (167) is changed as follows:
    f t + v · f x = ( K 1 ) λ σ 2 e λ Θ α ( 1 r ) δ α ( r 1 ) n · ( w v ) Θ n · ( w v ) R λ , α ( 2 ) ( x + σ r n / 2 , σ r ) f ( x , v ) f ( x + σ r n , w ) R λ , α ( 2 ) ( x σ r n / 2 , σ r ) f ( x , v ) f ( x σ r n , w ) r 2 d r d n d w .
  • The first sentence in Section 6.2 is changed as follows:
    “Above in Equation (167), we can formally assume that the contact zone is ‘thin’ that is, α 0 so that, for the values of r for which δ α ( r 1 ) > 0 , we have f ( x ± σ r n ) f ( x ± σ n ) , R λ , α ( 2 ) ( x ± σ r n / 2 , σ r ) R λ , 0 ( 2 ) ( x ± σ n / 2 , σ ) .”
  • Equation (169) is changed as follows:
    f t + v · f x = ( K 1 ) σ 2 1 e λ n · ( w v ) Θ n · ( w v ) R λ , 0 ( 2 ) ( x + σ n / 2 , σ ) f ( x , v ) f ( x + σ n , w ) R λ , 0 ( 2 ) ( x σ n / 2 , σ ) f ( x , v ) f ( x σ n , w ) d n d w .
  • Equation (170) is changed as follows, with the new sentence appended immediately after it:
    f t + v · f x = ( K 1 ) σ 2 n · ( w v ) Θ n · ( w v ) R ( x + σ n / 2 ) f ( x , v ) f ( x + σ n , w ) R ( x σ n / 2 ) f ( x , v ) f ( x σ n , w ) d n d w ,
    where R ( x ) = R , 0 ( 2 ) ( x , σ ) becomes the two-sphere cavity distribution function for hard spheres of diameter σ .
  • The last sentence before Section 7 is changed as follows:
    “This sets R ( x ± σ n / 2 ) = 1 , f ( x ± σ n ) = f ( x , v ) …”
  • Equation (172) is changed as follows:
    g t + v · g x = K 1 K 6 π ρ s p σ n · ( w v ) Θ n · ( w v ) R ( x + σ n / 2 ) g ( x , v ) g ( x + σ n , w ) R ( x σ n / 2 ) g ( x , v ) g ( x σ n , w ) d n d w .
  • Equation (173) is changed as follows:
    g t + v · g x = 6 π ρ s p σ n · ( w v ) Θ n · ( w v ) R ( x + σ n / 2 ) g ( x , v ) g ( x + σ n , w ) R ( x σ n / 2 ) g ( x , v ) g ( x σ n , w ) d n d w .
  • Equation (175), together with the preceding sentence, are changed as follows:
    We also note that
    R ( x ± σ n / 2 ) g ( x , v ) g ( x ± σ n , w ) = R ( x ) g ( x , v ) g ( x , w ) ± σ R ( x ) g ( x , v ) n · x R ( x ) g ( x , w ) +
  • Equation (180) is changed as follows:
    g 0 t + v · g 0 x = 6 π ρ s p n · ( w v ) Θ n · ( w v ) [ R ( g 0 ( v ) g 1 ( w ) + g 1 ( v ) g 0 ( w ) g 0 ( v ) g 1 ( w ) g 1 ( v ) g 0 ( w ) ) + n · R g 0 ( v ) ( R g 0 ( w ) ) x + g 0 ( v ) ( R g 0 ( w ) ) x ] d n d w .
  • Equations (185a) and (185b) are changed as follows:
    C [ v ] = 6 π ρ s p ( v v ) n · ( w v ) Θ n · ( w v ) n · ( R g 0 ( w ) ) x R g 0 ( v ) d n d w d v ,
    C [ v 2 ] = 6 π ρ s p v 2 v 2 n · ( w v ) Θ n · ( w v ) n · ( R g 0 ( w ) ) x R g 0 ( v ) d n d w d v .
  • Equations (187a) and (187b) are changed as follows:
    C [ v ] = 6 π ρ s p n · ( w v ) 2 Θ n · ( w v ) n · ( R g 0 ( w ) ) x R g 0 ( v ) n d n d w d v ,
    C [ v 2 ] = 6 π ρ s p n · ( w + v ) n · ( w v ) 2 Θ n · ( w v ) n · ( R g 0 ( w ) ) x R g 0 ( v ) d n d w d v .
  • Equation (188) is changed as follows:
    C [ v ] = 4 ρ s p x R ρ 2 θ , C [ v 2 ] = 8 ρ s p x · R ρ 2 θ u .
  • Equations (189a) and (189b) are changed as follows:
    ρ t + x · ( ρ u ) = 0 , ( ρ u ) t + x · ρ u u T + 1 + 4 ρ ρ s p R θ I = 0 ,
    ( ρ ϵ ) t + x · ρ ϵ + 1 + 4 ρ ρ s p R θ u = 0 .
  • Equations (197a) and (197b) are changed as follows:
    6 π ρ s p n · ( w v ) 2 n · ( w v ) n n T + n ( v u ) T + ( v u ) n T Θ n · ( w v )   R g 0 ( v ) g 1 ( w ) + g 1 ( v ) g 0 ( w ) n · R g 0 ( v ) ( R g 0 ( w ) ) x d n d w d v =   = ρ θ u x + u x T 2 3 x · u I 8 3 ρ s p R ρ 2 θ x · u I ,
    6 π ρ s p ( n · ( w v ) ) 2 [ ( n · ( w v ) ) 2 n + ( n · ( w v ) ) ( I + 2 n n T ) ( v u ) + + v u 2 I + 2 ( v u ) ( v u ) T n ] Θ n · ( w v ) R g 0 ( v ) g 1 ( w ) + g 1 ( v ) g 0 ( w ) n · R g 0 ( v ) ( R g 0 ( w ) ) x d n d w d v = 5 ρ θ θ x 20 ρ s p θ ( R ρ 2 θ ) x .
  • Equations (198a)–(198d) are changed as follows:
    n · ( w v ) 2 n · ( w v ) n n T + n ( v u ) T + ( v u ) n T Θ n · ( w v ) R g 0 ( v ) g 1 ( w ) + g 1 ( v ) g 0 ( w ) d n d w d v = 16 π 5 R ρ 2 θ S ,
    n · ( w v ) 2 ( n · ( w v ) n n T + n ( v u ) T + ( v u ) n T ) Θ n · ( w v ) n · R g 0 ( v ) ( R g 0 ( w ) ) x d n d w d v = 4 π 15 R ρ 2 θ u x + u x T + x · u I ,
    ( n · ( w v ) ) 2 [ ( n · ( w v ) ) 2 n + ( n · ( w v ) ) ( I + 2 n n T ) ( v u ) +   + v u 2 I + 2 ( v u ) ( v u ) T n ] Θ n · ( w v ) R g 0 ( v ) g 1 ( w ) + g 1 ( v ) g 0 ( w ) d n d w d v = 64 π 15 R ρ 2 θ q ,
    ( n · ( w v ) ) 2 [ ( n · ( w v ) ) 2 n + ( n · ( w v ) ) ( I + 2 n n T ) ( v u ) + + v u 2 I + 2 ( v u ) ( v u ) T n ] Θ n · ( w v ) n · R g 0 ( v ) ( R g 0 ( w ) ) x d n d w d v = 10 π 3 θ ( R ρ 2 θ ) x + 2 π R ρ 2 θ θ x .
  • Equations (199a) and (199b) are changed as follows:
    ρ S = 1 R + 8 ρ 5 ρ s p [ ρ S ] B = 1 R + 8 ρ 5 ρ s p μ u x + u x T 2 3 x · u I ,
    ρ q = 1 R + 12 ρ 5 ρ s p [ ρ q ] B = 1 R + 12 ρ 5 ρ s p 15 4 μ θ x , μ = 5 π ρ s p σ 96 θ ,
  • Equations (201a) and (201b) are changed as follows:
    ( ρ u ) t + x · ( ρ ( u u T + θ I + σ S ) ) = 4 ρ s p x · R ρ 2 θ + + 6 σ π ρ s p ( n · ( w v ) ) 2 n Θ n · ( w v ) R g 1 ( v ) n · ( R g 0 ( w ) ) x g 0 ( v ) n · ( R g 1 ( w ) ) x + 1 2 g 0 ( v ) n T 2 ( R g 0 ( w ) ) x 2 n d n d w d v ,
    ( ρ ϵ ) t + x · ( ρ ( ( ϵ + θ ) u + σ S u + σ q ) ) = 4 ρ s p x · R ρ 2 θ u + + 3 σ π ρ s p ( n · ( w + v ) ) ( n · ( w v ) ) 2 Θ n · ( w v ) R g 1 ( v ) n · ( R g 0 ( w ) ) x g 0 ( v ) n · ( R g 1 ( w ) ) x + 1 2 g 0 ( v ) n T 2 ( R g 0 ( w ) ) x 2 n d n d w d v .
  • Equation (202), together with the preceding sentence, are changed as follows:
    Above, we take advantage of the fact that, for ψ ( v ) = v or ψ ( v ) = v 2 ,
    ( ψ ( v ) ψ ( v ) ) n · ( w v ) Θ n · ( w v ) ( n n T ) g 0 ( v ) g 0 ( w ) d n d w d v = 0 .
  • Equations (203a)–(203d) are changed as follows:
    ( n · ( w v ) ) 2 n Θ n · ( w v ) R g 1 ( v ) n · ( R g 0 ( w ) ) x + g 0 ( v ) n · ( R g 1 ( w ) ) x d n d w d v = 4 π 15 x · R ρ 2 S ,
    ( n · ( w v ) ) 2 n Θ n · ( w v ) n T 2 ( R g 0 ( w ) ) x 2 n R g 0 ( v ) d n d w d v = = 8 π 15 x · R ρ 2 θ u x + u x T + x · u I ,
    ( n · ( w + v ) ) ( n · ( w v ) ) 2 Θ n · ( w v ) R g 1 ( v ) n · ( R g 0 ( w ) ) x + g 0 ( v ) n · ( R g 1 ( w ) ) x d n d w d v = 8 π 15 x · R ρ 2 S u + 3 2 q ,
    ( n · ( w + v ) ) ( n · ( w v ) ) 2 Θ n · ( w v ) n T 2 ( R g 0 ( w ) ) x 2 n R g 0 ( v ) d n d w d v = = 16 π 15 x · R ρ 2 θ u x + u x T + x · u I u + 5 2 θ x .
  • Equations (204a) and (204b) are changed as follows:
    ( ρ u ) t + x · ( ρ ( u u T + θ I ) ) = 4 ρ s p x · R ρ 2 θ σ x · 1 + 8 ρ 5 ρ s p R ρ S + 8 σ 5 π ρ s p x · R ρ 2 θ u x + u x T + x · u I ,
    ( ρ ϵ ) t + x · ( ρ ( ϵ + θ ) u ) = 4 ρ s p x · R ρ 2 θ u σ x · 1 + 8 ρ 5 ρ s p R ρ S u σ x · 1 + 12 ρ 5 ρ s p R ρ q + + 8 σ 5 π ρ s p x · R ρ 2 θ u x + u x T + x · u I u + 5 2 θ x .
  • Equations (205a) and (205b) are changed as follows:
    ( ρ u ) t + x · ρ u u T + 1 + 4 ρ ρ s p R θ I = = x · μ 1 R + a 1 u x + u x T 2 3 1 R + a 2 x · u I ,
    ( ρ ϵ ) t + x · ρ ϵ + 1 + 4 ρ ρ s p R θ u = 15 4 x · μ 1 R + a 3 θ x + + x · μ 1 R + a 1 u x + u x T 2 3 1 R + a 2 x · u I u .
  • Equations (206a)–(206c) are changed as follows:
    a 1 ρ ρ s p = 16 ρ 5 ρ s p 1 + 4 ρ 5 ρ s p R 1 + 12 π ,
    a 2 ρ ρ s p = 16 ρ 5 ρ s p 1 + 4 ρ 5 ρ s p R 1 18 π ,
    a 3 ρ ρ s p = 24 ρ 5 ρ s p 1 + 2 ρ 15 ρ s p R 9 + 32 π .
  • The paragraph preceding Equations (207a)–(207c), as well as Equations (207a)–(207c), are removed. In the next paragraph, the reference [2] (which is [46] in the updated manuscript) is provided for cavity distribution functions for hard spheres.
    The main results of [1] are unchanged, and the summary remains the same.

Conflicts of Interest

The author declares no conflict of interest.

References

  1. Abramov, R. The Random Gas of Hard Spheres. J 2019, 2, 162–205. [Google Scholar] [CrossRef] [Green Version]
  2. Boublík, T. Hard-Sphere Radial Distribution Function from the Residual Chemical Potential. Molec. Phys. 2006, 104, 3425–3433. [Google Scholar] [CrossRef]

Share and Cite

MDPI and ACS Style

Abramov, R.V. Correction: Abramov, R. The Random Gas of Hard Spheres. J 2019, 2, 162–205. J 2020, 3, 324-328. https://0-doi-org.brum.beds.ac.uk/10.3390/j3030025

AMA Style

Abramov RV. Correction: Abramov, R. The Random Gas of Hard Spheres. J 2019, 2, 162–205. J. 2020; 3(3):324-328. https://0-doi-org.brum.beds.ac.uk/10.3390/j3030025

Chicago/Turabian Style

Abramov, Rafail V. 2020. "Correction: Abramov, R. The Random Gas of Hard Spheres. J 2019, 2, 162–205" J 3, no. 3: 324-328. https://0-doi-org.brum.beds.ac.uk/10.3390/j3030025

Article Metrics

Back to TopTop