Next Article in Journal
On the Advent of Fractional Calculus in Econophysics via Continuous-Time Random Walk
Previous Article in Journal
Inertial Krasnoselskii–Mann Method in Banach Spaces
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Fibonacci Numbers with a Prescribed Block of Digits

Department of Mathematics, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové, Czech Republic
Submission received: 27 March 2020 / Revised: 15 April 2020 / Accepted: 19 April 2020 / Published: 21 April 2020
(This article belongs to the Section Mathematics and Computer Science)

Abstract

:
In this paper, we prove that F 22 = 17711 is the largest Fibonacci number whose decimal expansion is of the form a b b c c . The proof uses lower bounds for linear forms in three logarithms of algebraic numbers and some tools from Diophantine approximation.
MSC:
primary 11A63, 11B39; secondary 11J86

1. Introduction

Let ( F n ) n 0 be the Fibonacci sequence given by second-order recurrence F n + 2 = F n + 1 + F n , for n 0 , with initial conditions F 0 = 0 and F 1 = 1 . A few terms of this sequence are
0 , 1 , 1 , 2 , 3 , 5 , 8 , 13 , 21 , 34 , 55 , 89 , 144 , 233 , 377 , 610 , 987 , 1597 , 2584 , 4181 , 6765 , 10946 , 17711 , .
In the last decades, many results on Diophantine properties of Fibonacci numbers have been proved with the use of refined tools in number theory. For instance, Bugeaud, Mignotte, and Siksek [1] settled the problem of Fibonacci perfect power numbers (i.e., the equation F n = y t , for t > 1 ) by combing the powerful Baker’s theory with the Modular method (used by Wiles in the proof of the Fermat Last Theorem). See a generalization of their result in [2].
We remark that digital problems involving Fibonacci numbers have received much attention in the literature. A first result in this direction was proved, in 2000, by F. Luca [3] who showed that the largest Fibonacci number with only one distinct digit is F 10 = 55 . After this, many authors worked on repdigits (i.e., integers having only one distinct digit in its decimal expansion) as expressions related to sum, product of terms of binary recurrences (see [4,5,6,7,8,9,10,11,12,13] and references therein). However, the related problem of finding all Fibonacci numbers with only two distinct digits remains open.
The aim of this paper is to continue this program. In fact, our main result searches for all Fibonacci numbers of the form a b b c c , which provides a generalization for Luca’s result ( a = b = c ). More precisely, our main result is the following:
Theorem 1.
Let a [ 1 , 9 ] and b , c [ 0 , 9 ] . The largest solution of the Diophantine equation
F n = a b b m c c = a · 10 m + + b · 10 m 1 9 10 + c · 10 1 9 ,
in positive integers m , n , and ℓ, with 2 m , is n = 22 . Explicitly, F 22 = 17711 .
Our proof combines two deep techniques in number theory, namely, the Baker’s theory on linear forms in logarithms and some tools from Diophantine approximation (a reduction method due to Baker and Davenport).

2. Auxiliary Results

In this section, we shall present some results which will be useful in the proofs.
Let α = ( 1 + 5 ) / 2 and β = 1 / α . The Binet’s formula asserts that F n = ( α n β n ) / 5 . From this formula, it is possible to deduce that the estimates
α n 2 F n α n 1 ,
hold for all n 1 . In addition, this Binet’s formula allows us to manipulate our Diophantine equation to obtain upper bounds for some linear forms in three logarithms. Thus, in order to obtain lower bounds for these forms, we shall use the celebrated Baker’s theory. Among these lower bounds, we decided to use one which was proved in ([1], Theorem 9.4).
Lemma 1.
Let γ 1 , , γ t be real algebraic numbers and let b 1 , , b t be nonzero rational integer numbers. Let D be the degree of the number field Q ( γ 1 , , γ t ) over Q and let A j be a positive real number satisfying
A j max { D h ( γ j ) , | log γ j | , 0.16 } ,
where j = 1 , , t . Assume that
B max { | b 1 | , , | b t | } .
If γ 1 b 1 γ t b t 1 , then
| γ 1 b 1 γ t b t 1 | exp ( 1.4 · 30 t + 3 · t 4.5 · D 2 ( 1 + log D ) ( 1 + log B ) A 1 A t ) .
Here, the logarithmic height of an n-degree algebraic number α is defined as
h ( α ) = 1 n log | a | + j = 1 n log max { 1 , | α ( j ) | } ,
where a is the leading coefficient of the minimal primitive polynomial of α (over Z ) and ( α ( j ) ) 1 j n are the (algebraic) conjugates of α .
With these lower and upper bounds, we shall obtain an upper bound for n which is, in general, very large and then the next step is to reduce it. For that, we shall use a reduction method which is originated from Diophantine approximation. Here, we shall use a result due to Dujella and Pethö [14] (which is a variant of a famous method due to Baker–Davenport). For a real number x we use x = min { | x n | : n Z } for the distance from x to the nearest integer (the so-called Nint function).
Lemma 2.
Let M > 0 be an integer and let γ , μ be real numbers, such that γ Q . Let p / q be a convergent of the continued fraction expansion of γ such that q > 6 M and ϵ : = μ q M γ q > 0. Then there is no solution to the Diophantine inequality
0 < m γ n + μ < A · B m
in positive integers m , n with
log ( A q / ϵ ) log B m < M .
After presetting these tools, we can now prove our main result.

3. The Proof of The Theorem

3.1. Finding a Bound on N

By the Binet’s formula and the identity in Equation (1), we have
α n 5 a + b 9 10 m + = c b 9 10 + β n 5 c 9 .
Thus,
α n 5 a + b 9 10 m + < 2 · 10 .
On dividing through by ( a + b / 9 ) 10 m + , we obtain
a + b 9 1 α n 5 10 ( m + ) 1 < 2 10 m ,
where we used the fact that a + b / 9 1 . Now, we are in a position to apply Lemma 1, but first we must prove that | ( 5 ( a + b / 9 ) ) 1 10 ( m + ) α n 1 | 0 . Indeed, in the contrary case, we would get that α 2 n Q which is an absurd. Thus, let us take
γ 1 : = 5 ( a + b / 9 ) , γ 2 : = α , γ 3 : = 10 , b 1 : = 1 , b 2 : = n , b 3 : = ( m + ) .
Note that Q ( γ 1 , γ 2 , γ 3 ) = Q ( 5 ) and then D = 2 . The conjugates of γ 1 , γ 2 , and γ 3 are γ 1 = γ 1 , γ 2 = β , γ 3 = γ 3 , respectively. Surely, γ 2 and γ 3 are algebraic integers, while the minimal polynomial of γ 1 is ( X γ 1 ) ( X γ 1 ) = X 2 5 ( a + b / 9 ) 2 which is a divisor of 81 X 2 5 ( 9 a + b ) 2 . Therefore,
h ( γ 1 ) 1 2 log 81 + 2 log 10 5 < 5.4 .
(A more relaxed upper bound for h ( γ 1 ) could be found by using the well-known property that h ( x + y z ) h ( x ) + h ( y ) + h ( z ) + log 2 ). In addition, h ( γ 2 ) = ( log α ) / 2 < 0.75 and h ( γ 3 ) = log 10 < 2.31 . Let us take A 1 : = 10.9 , A 2 = 1.5 , and A 3 = 4.7 . Of course, we can assume that n > 14 . Thus,
a + b 9 1 α n 5 10 ( m + ) 1 > exp 7.6 · 10 13 ( 1 + log B ) ,
where B max { n , m + }
By combining the estimates in Equations (4) and (5), we get
m < 3.4 · 10 13 ( 1 + log B ) .
Now, we have that F n has m + + 1 digits and so
m + + 1 = log F n log 10 + 1 .
Since m and x + 1 > x , we have
2 m + 1 > log F n log 10 ( n 2 ) log α log 10 > 0.2 ( n 2 )
so 10 m + 6 n . Thus, we can take B : = 10 m + 6 , which yields to
m < 3.4 · 10 13 ( 1 + log ( 10 m + 6 ) )
and therefore m 1.3 · 10 15 .

3.2. Reducing the Bound

Now, let us write Λ : = n log α ( m + ) log 10 + log ( ( a + b / 9 ) 1 ( 5 ) 1 ) . We know that e x 1 > x , for all x R + . By supposing that Λ > 0 (the other case is completely similar, where we used the fact that | e x 1 | = 1 e | x | , if x < 0 ), we can rewrite Equation (4) as
0 < n log α ( m + ) log 10 + log ( a + b / 9 ) 1 ( 5 ) 1 < 1.8 · 10 m .
Since m > ( 0.1 ) n 0.7 (because 2 m + 1 > 0.2 ( n 2 ) ), we can divide the previous inequality by log 10 , to obtain
0 < n γ ( m + ) + μ < 4 · ( 1.2 ) n ,
where γ : = log α / log 10 and μ : = log ( ( a + b / 9 ) 1 ( 5 ) 1 ) / log 10 .
Clearly γ is an irrational number (because α k is irrational for any non-zero integer k). Let us denote p n / q n as the nth convergent of its continued fraction.
In order to reduce our bound on m, we shall use Lemma 2. Now, since n 10 m + 6 < 1.4 · 10 16 , we choose M = 1.4 · 10 16 . Thus,
p 38 q 38 = 1426134855866370784 6824015306170795931 ,
then q 38 6824015306170795931 > 8.4 · 10 16 = 6 M . Furthermore, we have M q 38 γ < 0.0013 . On the other hand, by computing q 38 μ , for a [ 1 , 9 ] and b [ 0 , 9 ] , we have that the minimal value of this expression is obtained when a = 8 , b = 2 and is > 0.0028 . Hence,
ϵ = q 38 μ M q 38 γ > 0.0015 .
We notice the all the hypotheses of the Lemma 2 are fulfilled, where A = 4 and B = 1.2 , so, by that lemma, there is no solution of the inequality in Equation (7) (and then for the Diophantine Equation (1)) for n in the range
[ log ( A q 38 / ϵ ) / log B + 1 , M ] = [ 281 , 1.4 · 10 16 ] .
Since n < M , we get n 280 . By using Equation (6), we deduce that
m + ( n 1 ) log α log 10 1 < 58.4
and so m + 58 . Since m + + 1 5 , it is seen that F n has at least 5 digits yielding n 21 . A simple search in the list of the Fibonacci numbers F n in the range n [ 21 , 280 ] (see Table A1 in Appendix A), returns only F 22 = 17711 with the required properties. This completes the proof. □

4. Conclusions

In this paper we have been interested in finding all Fibonacci numbers which are special concatenation of digits. In particular, we show that F 22 = 17711 is the largest Fibonacci number whose decimal expansion is of the form a b b c c , where a , b , and c are decimal digits. Our approach to the proof is based on the combination of lower bounds for linear forms in logarithms (due to Baker) with reduction methods (due to Dujella–Pethö).

Funding

The author was supported by Project of Excelence PrF UHK No. 2215/2020, University of Hradec Králové, Czech Republic.

Acknowledgments

The author is very grateful to the referees for their very constructive suggestions that helped to improve the quality of this paper.

Conflicts of Interest

The author declares no conflict of interest.

Appendix A

Table A1. Values of F ( n ) for n from 21 to 280.
Table A1. Values of F ( n ) for n from 21 to 280.
n F n n F n
211094628014691098406862188148944207245954912110548093601382197697835
22177112799079598147510263717870894449029933369491131786514446266146
23286572785611500259351924431073312796924978741056961814867751431689
24463682773468097888158339286797581652104954628434169971646694834457
25750252762143402371193585144275731144820024112622791843221056597232
261213932751324695516964754142521850507284930515811378128425638237225
27196418274818706854228831001753880637535093596811413714795418360007
28317811273505988662735923140767969869749836918999964413630219877218
29514229272312718191492907860985910767785256677811449301165198482789
30832040271193270471243015279782059101964580241188515112465021394429
311346269270119447720249892581203851665820676436622934188700177088360
32217830926973822750993122698578207436143903804565580923764844306069
33352457826845624969256769882625644229676772632057353264935332782291
34570288726728197781736352815952563206467131172508227658829511523778
35922746526617427187520417066673081023209641459549125606105821258513
361493035226510770594215935749279482183257489712959102052723690265265
37241578172646656593304481317393598839952151746590023553382130993248
38390881692634114000911454431885883343305337966369078499341559272017
39632459862622542592393026885507715496646813780220945054040571721231
401023341552611571408518427546378167846658524186148133445300987550786
41165580141260971183874599339129547649988289594072811608739584170445
42267914296259600224643828207248620196670234592075321836561403380341
43433494437258370959230771131880927453318055001997489772178180790104
44701408733257229265413057075367692743352179590077832064383222590237
451134903170256141693817714056513234709965875411919657707794958199867
46183631190325587571595343018854458033386304178158174356588264390370
47297121507325454122222371037658776676579571233761483351206693809497
48480752697625333449372971981195681356806732944396691005381570580873
49777874204925220672849399056463095319772838289364792345825123228624
501258626902525112776523572924732586037033894655031898659556447352249
51203650110742507896325826131730509282738943634332893686268675876375
52329512800992494880197746793002076754294951020699004973287771475874
53533162911732483016128079338728432528443992613633888712980904400501
54862675712722471864069667454273644225850958407065116260306867075373
551395838624452461152058411884454788302593034206568772452674037325128
56225851433717245712011255569818855923257924200496343807632829750245
57365435296162244440047156314635932379335110006072428645041207574883
58591286729879243271964099255182923543922814194423915162591622175362
59956722026041242168083057059453008835412295811648513482449585399521
601548008755920241103881042195729914708510518382775401680142036775841
61250473078196124064202014863723094126901777428873111802307548623680
62405273953788123939679027332006820581608740953902289877834488152161
63655747031984223824522987531716273545293036474970821924473060471519
641061020985772323715156039800290547036315704478931467953361427680642
65171676801775652369366947731425726508977331996039353971111632790877
66277778900352882355789092068864820527338372482892113982249794889765
67449455702128532343577855662560905981638959513147239988861837901112
68727234602481412332211236406303914545699412969744873993387956988653
691176690304609942321366619256256991435939546543402365995473880912459
70190392490709135231844617150046923109759866426342507997914076076194
71308061521170129230522002106210068326179680117059857997559804836265
72498454011879264229322615043836854783580186309282650000354271239929
73806515533049393228199387062373213542599493807777207997205533596336
741304969544928657227123227981463641240980692501505442003148737643593
75211148507797805022676159080909572301618801306271765994056795952743
76341645462290670722547068900554068939361891195233676009091941690850
77552793970088475722429090180355503362256910111038089984964854261893
78894439432379146422317978720198565577104981084195586024127087428957
791447233402467622122211111460156937785151929026842503960837766832936
80234167283484676852216867260041627791953052057353082063289320596021
81378890623731439062204244200115309993198876969489421897548446236915
82613057907216115912192623059926317798754175087863660165740874359106
83991948530947554972181621140188992194444701881625761731807571877809
841605006438163670882171001919737325604309473206237898433933302481297
85259695496911122585216619220451666590135228675387863297874269396512
86420196140727489673215382699285659014174244530850035136059033084785
87679891637638612258214236521166007575960984144537828161815236311727
881100087778366101931213146178119651438213260386312206974243796773058
89177997941600471418921290343046356137747723758225621187571439538669
90288006719437081612021155835073295300465536628086585786672357234389
91466004661037553030921034507973060837282187130139035400899082304280
92754011380474634642920921327100234463183349497947550385773274930109
931220016041512187673820813180872826374098837632191485015125807374171
94197402742198682231672078146227408089084511865756065370647467555938
95319404346349900999052065034645418285014325766435419644478339818233
96516807088548583230722053111581989804070186099320645726169127737705
97836211434898484229772041923063428480944139667114773918309212080528
981353018523447067460492031188518561323126046432205871807859915657177
99218922995834555169026202734544867157818093234908902110449296423351
100354224848179261915075201453973694165307953197296969697410619233826
101573147844013817084101200280571172992510140037611932413038677189525
102927372692193078999176199173402521172797813159685037284371942044301
1031500520536206896083277198107168651819712326877926895128666735145224
104242789322839997508245319766233869353085486281758142155705206899077
105392841376460687116573019640934782466626840596168752972961528246147
106635630699300684624818319525299086886458645685589389182743678652930
1071028472075761371741391319415635695580168194910579363790217849593217
108166410277506205636620961939663391306290450775010025392525829059713
109269257485082342810760091925972304273877744135569338397692020533504
110435667762588548447381051913691087032412706639440686994833808526209
111704925247670891258141141902281217241465037496128651402858212007295
1121140593010259439705522191891409869790947669143312035591975596518914
113184551825793033096366333188871347450517368352816615810882615488381
114298611126818977066918552187538522340430300790495419781092981030533
115483162952612010163284885186332825110087067562321196029789634457848
116781774079430987230203437185205697230343233228174223751303346572685
1171264937032042997393488322184127127879743834334146972278486287885163
118204671111147398462369175918378569350599398894027251472817058687522
119331164814351698201718008118248558529144435440119720805669229197641
120535835925499096664087184018130010821454963453907530667147829489881
121867000739850794865805192118018547707689471986212190138521399707760
1221402836665349891529892376117911463113765491467695340528626429782121
123226983740520068639569756821787084593923980518516849609894969925639
124367267407055057792558994431774378519841510949178490918731459856482
125594251147575126432128751251762706074082469569338358691163510069157
126961518554630184224687745681751672445759041379840132227567949787325
1271555769702205310656816496931741033628323428189498226463595560281832
128251728825683549488150424261173638817435613190341905763972389505493
129407305795904080553832073954172394810887814999156320699623170776339
130659034621587630041982498215171244006547798191185585064349218729154
1311066340417491710595814572169170150804340016807970735635273952047185
132172537503907934063779707038416993202207781383214849429075266681969
133279171545657105123361164255316857602132235424755886206198685365216
134451709049565039187140871293716735600075545958458963222876581316753
135730880595222144310502035549016622002056689466296922983322104048463
1361182589644787183497642906842716513598018856492162040239554477268290
137191347024000932780814494239171648404037832974134882743767626780173
138309605988479651130578784923441635193981023518027157495786850488117
139500953012480583911393279162611623210056809456107725247980776292056
140810559000960235041972064086051611983924214061919432247806074196061
1411311512013440818953365343248661601226132595394188293000174702095995
142212207101440105399533740733471159757791618667731139247631372100066
143343358302784187294870275058337158468340976726457153752543329995929
144555565404224292694404015791808157289450641941273985495088042104137
145898923707008479989274290850145156178890334785183168257455287891792
1461454489111232772683678306641953155110560307156090817237632754212345
147235341281824125267295259749209815468330027629092351019822533679447
148380790192947402535663090413405115342230279526998466217810220532898
149616131474771527802958350162614915226099748102093884802012313146549
150996921667718930338621440576020015116130531424904581415797907386349

References

  1. Bugeaud, Y.; Mignotte, M.; Siksek, S. Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas powers. Ann. Math. 2006, 163, 969–1018. [Google Scholar] [CrossRef] [Green Version]
  2. Marques, D.; Togbé, A. Perfect powers among Fibonomial coefficients. C. R. Acad. Sci. Paris 2010, 348, 717–720. [Google Scholar] [CrossRef]
  3. Luca, F. Fibonacci and Lucas numbers with only one distinct digit. Port. Math. 2000, 57, 243–254. [Google Scholar]
  4. Adegbindin, C.; Luca, F.; Togbé, A. Lucas numbers as sums of two repdigits. Lith. Math. J. 2019, 59, 295–304. [Google Scholar] [CrossRef]
  5. Luca, F. Repdigits as sums of three Fibonacci numbers. Math. Commun. 2012, 17, 1–11. [Google Scholar]
  6. Marques, D.; Togbe, A. Fibonacci and Lucas numbers of the form 2a + 3b + 5c. Proc. Jpn. Acad. Ser. A Math. Sci. 2013, 89, 47–50. [Google Scholar] [CrossRef]
  7. Qu, Y.; Zeng, J.; Cao, Y. Fibonacci and Lucas Numbers of the Form 2a + 3b + 5c + 7d. Symmetry 2018, 10, 509. [Google Scholar] [CrossRef] [Green Version]
  8. Erduvan, F.; Keskin, R. Fibonacci and Lucas numbers as products of two repdigits. Turk. J. Math. 2019, 43, 2142–2153. [Google Scholar] [CrossRef]
  9. Alvarado, S.D.; Luca, F. Fibonacci numbers which are sums of two repdigits. In Proceedings of the XIVth International Conference on Fibonacci Numbers and Their Applications, Morelia, Mexico, 1–7 July 2011; pp. 97–108. [Google Scholar]
  10. Siar, Z.; Erduvan, F.; Keskin, R. Repdigits as product of two Pell or Pell-Lucas numbers. Acta Math. Univ. Comenian. 2019, 88, 247–256. [Google Scholar]
  11. Ddamulira, M. Repdigits as sums of three Padovan number. Boletín De La Soc. Matemática Mex. 2020, 26, 1–15. [Google Scholar] [CrossRef] [Green Version]
  12. Alahmadi, A.; Altassan, A.; Luca, F.; Shoaib, H. Fibonacci numbers which are concatenations of two repdigits. Quaest. Math. 2020, 43, 1–10. [Google Scholar] [CrossRef]
  13. Trojovský, P. On Terms of Generalized Fibonacci Sequences which are Powers of their Indexes. Mathematics 2019, 7, 700. [Google Scholar] [CrossRef] [Green Version]
  14. Dujella, A.; Pethö, A. A generalization of a theorem of Baker and Davenport. Quart. J. Math. Oxf. Ser. 1998, 49, 291–306. [Google Scholar] [CrossRef]

Share and Cite

MDPI and ACS Style

Trojovský, P. Fibonacci Numbers with a Prescribed Block of Digits. Mathematics 2020, 8, 639. https://0-doi-org.brum.beds.ac.uk/10.3390/math8040639

AMA Style

Trojovský P. Fibonacci Numbers with a Prescribed Block of Digits. Mathematics. 2020; 8(4):639. https://0-doi-org.brum.beds.ac.uk/10.3390/math8040639

Chicago/Turabian Style

Trojovský, Pavel. 2020. "Fibonacci Numbers with a Prescribed Block of Digits" Mathematics 8, no. 4: 639. https://0-doi-org.brum.beds.ac.uk/10.3390/math8040639

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop