Next Article in Journal
Composition and Applications of Aloe vera Leaf Gel
Previous Article in Journal
4-Azatricyclo[5.2.2.02,6]undecane-3,5,8-triones as Potential Pharmacological Agents
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

A Simple, Rapid and Mild One Pot Synthesis of Benzene Ring Acylated and Demethylated Analogues of Harmine under Solvent-free Conditions

H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
*
Author to whom correspondence should be addressed.
Submission received: 6 May 2008 / Revised: 24 June 2008 / Accepted: 23 July 2008 / Published: 6 August 2008
(This article belongs to the Section Natural Products Chemistry)

Abstract

:
A simple, rapid, solvent-free, room temperature one pot synthesis of benzene ring acylated and demethylated analogues of harmine using acyl halides/acid anhydrides and AlCl3 has been developed. Eight different acyl halides/acid anhydrides were used in the synthesis. The resulting mixture of products was separated by column chromatography to afford 10- and 12-monoacyl analogues, along with 10,12-diacyl-11-hydroxy products. In five cases the corresponding 10-acyl-11-hydroxy analogues were also obtained. Yields from the eight syntheses (29 products in total) were in the 6-34% range and all compounds were fully characterized.

Introduction

Solvent-free chemical syntheses have recently received much attention. These processes are not only environmentally benign, but also economically beneficial because toxic wastes can be minimized or eliminated, so the costs of waste treatment are also reduced. An additional attractive feature is their operational simplicity. Thus, there are now over 500 published papers describing solvent-free reactions giving quantitative yields on the gram and kilogram scale that support the effectiveness of the method [1,2,3,4].
Friedel-Crafts acylation is one of the most important protocols for the formation of C-C bonds between aromatic rings and aliphatic moieties. This method generally requires addition of a Lewis acid catalyst such as AlCl3 to a well-stirred mixture of an alkyl or acyl halide and an aromatic compound under inert conditions. Usually, these reactions require high temperatures, long reaction times and tedious workups [5,6]. Recently, Friedel-Crafts acylation of alkoxybenzenes was achieved efficiently by a reaction with aliphatic acid anhydrides in the presence of catalytic amounts of aluminum hydrogensulfate, Al(HSO4)3, both in nitromethane and under solvent-free conditions, but these reactions required high temperaures (70 oC) for completion [7]. Although the acetylation of aryl ethers using acetic anhydride in the presence of zeolites under mild conditions in a solvent-free system gave the corresponding para-acetylated products in high yields, these reactions also required high temperatures (120 oC) and occurred only in activated aromatic compounds [8]. The use of metal triflates in ionic liquids for Friedel-Crafts acylation have also been reported, but it is again limited to highly activated substrates and also requires high temperatures [9].
The β-carboline alkaloids, one of which is harmine, are very important natural products due to their interesting chemistry, pharmacological importance and therapeutic potential. They posses anti-tumor, anti-HIV and other important biological activities [10,11,12]. Recently, we have reported the Friedel-Crafts acylation of N-acetyltetrahydroharmine under solvent-free conditions, which resulted in the synthesis of a series of its 10-acyl and 12-acyl analogues in high overall yields [13]. Here we would like to present a study of the reaction of the Friedel-Crafts reagents (acyl halides/acid anhydrides and AlCl3) with harmine (7-MeO-1-Me-9H-pyrido[3,4-b]-indole, 1), another β-carboline alkaloid, at room temperature and under solvent-free conditions. The harmine used in these investigations was isolated from Peganum harmala following a method reported earlier [14]. Eight different syntheses were carried out, which yielded 29 different products. None of these products had previously been reported. After separation by column chromatography the reaction mixtures gave 10-acyl (2-9), 12-acyl (10-17), 10-acyl-11-hydroxy (18-22) and 10,12-diacyl-11-hydroxy (23-30) derivatives of harmine (1). All compounds were fully characterized.

Results and Discussion

The solid phase reaction of harmine (1) with different acylating agents (acetic anhydride, propionyl chloride, butyric anhydride, iso-butyric anhydride, valeryl chloride, hexanoyl chloride, heptanoyl chloride and capryloyl chloride) in the presence of AlCl3 yielded mono acyl derivatives without demethylation as well as mono and diacyl derivatives with demethylation. The acylation took place at the carbons ortho to the methoxy group (C-10 acylated products 2-9) and (C-12 acylated products 10-17). Acylation with demethylation of the C-11 OCH3 group yielded both monoacyl (C-10-acyl,11-hydroxy 18-22) and diacyl (C-10,12-diacyl,11-hydroxy 23-30) products.
Molecules 13 01584 i001
Table 1. Friedel-Crafts acylation of 1 under solvent-free conditions.
Table 1. Friedel-Crafts acylation of 1 under solvent-free conditions.
EntryReagentsProductsR1R2R3Yielda (%)
A(CH3CO)2O21'CO-2'CH3OCH3H14.4
10HOCH31'CO-2'CH312.5
231'CO-2'CH3OH1''CO-2''CH312.7
BCH3CH2COCl31'CO-2'CH2-3'CH3OCH3H33.6
11HOCH31'CO-2'CH2-3'CH312.7
181'CO-2'CH2-3'CH3OHH12.8
241'CO-2'CH2-3'CH3OH1''CO-2''CH2-3''CH314.6
C(CH3-CH2-CH2-CO)2O41'CO-(CH2)2-4'CH3OCH3H32.1
12HOCH31'CO-(CH2)2-4'CH312.5
191'CO-(CH2)2-4'CH3OHH7.0
251'CO-(CH2)2-4'CH3OH1''CO-(CH2)2-4''CH39.7
D((CH3)2CH-CO)2O51'CO-2'CH(CH3)2OCH3H20.7
13HOCH31'CO-2'CH(CH3)27.9
201'CO-2'CH(CH3)2OHH20.2
261'CO-2'CH(CH3)2OH1''CO-2''CH(CH3)27.9
ECH3-(CH2)3-CO-Cl61'CO-(CH2)3-5'CH3OCH3H18.8
14HOCH31'CO-(CH2)3-5'CH310.1
271'CO-(CH2)3-5'CH3OH1''CO-(CH2)3-5''CH314.8
FCH3-(CH2)4-CO-Cl71'CO-(CH2)4-6'CH3OCH3H20.0
15HOCH31'CO-(CH2)4-6'CH312.6
211'CO-(CH2)4-6'CH3OHH10.2
281'CO-(CH2)4-6'CH3OH1''CO-(CH2)4-6''CH313.5
GCH3-(CH2)5-CO-Cl81'CO-(CH2)5-7'CH3OCH3H26.8
16HOCH31'CO-(CH2)5-7'CH311.8
221'CO-(CH2)5-7'CH3OHH5.9
291'CO-(CH2)5-7'CH3OH1''CO-(CH2)5-7''CH314.1
HCH3-(CH2)6-CO-Cl91'CO-(CH2)6-8'CH3OCH3H31.1
17HOCH31'CO-(CH2)6-8'CH311.5
301'CO-(CH2)6-8'CH3OH1''CO-(CH2)6-8''CH312.7
a Isolated yields of the products.
These reaction products were separated by silica gel column chromatography. It was noted that 10-acyl derivatives were obtained as the major products. The remaining derivatives were also obtained in acceptable yields (Table 1). No 10-acyl-11-hydroxy derivatives could be isolated in the present work from the products of the reaction with acetic anhydride (entry A), valeryl chloride (entry E) and capryloyl chloride (entry H). All these harmine derivatives are reported for the first time. The 10,12-diacyl-11-hydroxy products may be formed from 10-acyl-11-hydroxy compounds through direct Friedel-Crafts acylation at C-12, or may be obtained after esterification of phenolic OH, through Fries rearrangement in the presence of AlCl3 [15]. The demethylation of 11-OCH3 in the presence of Lewis acid (AlCl3) may be due to the electron withdrawing effect of the 10-acyl group and the pyridine ring of harmine. The resulting phenolic OH facilitates the introduction of second acyl group in the benzene ring and considerable quantities of 10,12-diacyl-11-hydroxy derivatives of harmine were obtained under these solvent-free conditions. Earlier it has been reported that phenols do not react satisfactorily with Friedel-Crafts reagent in solvents because of their reaction with Lewis acids (Ar-OH + AlCl3 ➔ Ar-O-AlCl2 + HCl) resulting in compounds which are usually only sparingly soluble in the reaction medium and hence slow down the reactions [16]. It is important to note that under the same reaction conditions Ghiaci and Asghari [17] reported O-acylated phenols but in the present studies no O-acylated product was obtained. Further, under these reaction conditions no acylation of the pyridine ring of 1 occurred.
Figure 1. Significant HMBC (1H ➔ 13C) interactions of 10,12-dipropionyl-11-hydroxy (24) analogue of 1.
Figure 1. Significant HMBC (1H ➔ 13C) interactions of 10,12-dipropionyl-11-hydroxy (24) analogue of 1.
Molecules 13 01584 g001
The derivatives have been characterized by spectral studies, including IR, UV, EIMS, HREIMS, 1D (1H-NMR and 13C-NMR; Broad Band decoupled, DEPT), and 2D-NMR (COSY-45, TOCSY, HMQC and HMBC) (See Experimental, Table 2 and Table 3) and comparison of the spectral data with reported values of similar compounds [13,18,19]. For the 10-acyl analogues (see compound 3 in Table 2), the characteristic H-9 and H-12 peaks appeared in the 1H-NMR spectra as one-proton singlets at ~ δ 8.5 and 7.1, respectively, confirming the substitution at C-10. The 1H-NMR spectra of 12-acyl analogues (compound 11) characteristically showed two sets of one-proton doublets at ~ δ 8.2 and 6.9, assigned to H-9 and H-10 respectively, showing the substitution on C-12. For 10-acyl demethylated analogues (compound 18), the characteristic peaks of H-9 and H-12 appeared as one-proton singlets at ~ δ 8.8 and 6.9, respectively, whereas for 10,12-diacyl demethylated analogues (compound 24), the characteristic H-9 peak appeared as a one-proton singlet at ~ δ 8.7 and a peak for chelated phenolic OH appeared at ~ δ 14 in CDCl3 in the 1H-NMR spectra. The demethylation was also confirmed from their high resolution mass spectral data (See Experimental). The 13C-NMR signals of quaternary carbons were particularly assigned on the basis of HMBC connectivities observed for these carbons with various protons. The typical HMBC connectivities of various protons with different carbons are also shown in Figure 1 for compound 24.

Conclusions

In this study new benzene ring substituted and demethylated derivatives of harmine were obtained for the first time in one-pot using acyl halides/acid anhydride and AlCl3 under solvent-free conditions at room temperature after short reaction times. The derivatives obtained in these studies are being screened for potential biological activities such as anti-cancer, anti-bacterial, anti-fungal, CNS and anti-hypertensive properties. The results will be reported in due course. Further the β-carboline alkaloids possessing acyl substituents on C-10 and C-12 are rare in nature, hence the spectral data presented in this communication should be a useful contribution to the structural elucidation of related natural products.

Experimental

General

Melting points were determined using a Buchi-535 melting point apparatus and are uncorrected. Ultraviolet spectra were measured on a Hitachi-3200 spectrophotometer. Infrared spectra were recorded on a Bruker VECTOR 22 spectrophotometer. The 1H- and 13C-NMR spectra were recorded at 400 and 100 MHz, respectively, on a Bruker Avance 400 spectrometer. Mass spectra were run on a Jeol JMS-HX110 (high resolution, E.I. probe, 70 eV) and a Varian MAT-312 (low resolution, E.I. probe, 70 eV) instrument.

Solvent-Free Friedel-Crafts Acylation: General Procedure

A mixture of harmine (1, 100 mg), acylating agents (3.5 mL) and anhydrous AlCl3 (400 mg) was thoroughly ground in an agate mortar with a pestle for 50 min in a fume cupboard. The reaction mixture was then kept at room temperature for 1 hour and poured into crushed ice, made basic with 30% aqueous NH4OH and extracted with ethyl acetate. The ethyl acetate layer gave a solid mass after washing, drying (Na2SO4) and removal of solvents under reduced pressure. Further workup using column chromatography (silica gel; Merck 9385; CHCl3-MeOH, in increasing order of polarity from 9.95:0.05 to 9.5:0.5) afforded 10,12-diacyl,11-hydroxy (23-30; TLC data: Rf ~ 0.90, 9.5:0.5 CHCl3-MeOH), 12-acyl (10-17; TLC data: Rf ~ 0.86, 9.5:0.5 CHCl3-MeOH), 10-acyl,11-hydroxy (18-22; TLC data: Rf ~ 0.70, 9.5:0.5 CHCl3-MeOH ) and 10-acyl (2-9; TLC data: Rf ~ 0.61, 9.5:0.5 CHCl3-MeOH) derivatives, respectively, as colorless crystalline solids, in moderate yields (Table 1).
10-Acetyl-11-methoxy-3-methyl-β-carboline (2). 17.3 mg; mp: 265-266 oC; IR (CHCl3) νmax cm-1: 3263.2 (indole N-H) 2962.6, 2847.8 (C-H), 1656.4 (ketone C=O), 1606.1, 1524.2, 1457.0 (aromatic C=C), 1162.3 (C-O); UV (MeOH) λmax nm: 330.1, 270.1, 229.7; 1H-NMR (CD3OD): δ 8.18 (1H, d, J = 5.7 Hz, H-5), 8.05 (1H, d, J = 5.7 Hz, H-6), 8.46 (1H, s, H-9), 7.14 (1H, s, H-12), 2.86 (3H, s, H-14), 2.98 (3H, s, H-2′), 4.01 (3H, s, OCH3); 13C-NMR (CD3OD): δ 136.5 (C-2), 142.1 (C-3), 139.3 (C-5), 113.2 (C-6), 116.0 (C-7), 130.8 (C-8), 125.9 (C-9), 123.9 (C-10), 161.6 (C-11), 94.5 (C-12), 146.6 (C-13), 19.6 (C-14), 204.6 (C-1′), 32.4 (C-2′), 56.8 (OCH3); HREIMS (m/z): 254.1048 [C15H14N2O2 calcd. 254.1055]; EIMS m/z (%): 254 [M+] (100), 239 (94), 224 (36), 211 (4), 196 (28).
10-Propionyl-11-methoxy-3-methyl-β-carboline (3). 39.2 mg; mp: 268-269 oC; IR (CHCl3) νmax cm-1: 3264.2 (indole N-H), 2963.2, 2848.6 (C-H), 1656.1 (ketone C=O), 1604.1, 1525.1, 1453.2 (aromatic C=C), 1166.3 (C-O); UV (MeOH) λmax nm: 329.6, 269.4, 230.2; 1H-NMR (CD3OD): Table 2; 13C-NMR (CD3OD): Table 3; HREIMS (m/z): 268.1202 [C16H16N2O2 calcd. 268.1212]; EIMS m/z (%): 268 [M+] (60), 253 (10), 239 (100), 224 (40), 211 (3), 196 (32).
10-Butyryl-11-methoxy-3-methyl-β-carboline (4). 42.7 mg; mp: 269-270 oC; IR (CHCl3) νmax cm-1: 3268.2 (indole N-H), 2927.1, 2854.2 (C-H), 1657.1 (ketone C=O), 1608.3, 1523.9, 1412.5 (aromatic C=C), 1152.1 (C-O); UV (MeOH) λmax nm: 329.8, 269.8, 229.5; 1H-NMR (CD3OD): δ 8.18 (1H, d, J = 5.4 Hz, H-5), 8.04 (1H, d, J = 5.4 Hz, H-6), 8.48 (1H, s, H-9), 7.15 (1H, s, H-12), 2.88 (3H, s, H-14), 3.03 (2H, t, J = 7.3 Hz, H-2′), 1.72 (2H, sextet, J = 7.3 Hz, H-3′), 0.99 (3H, t, J = 7.3 Hz, H-4′), 4.03 (3H, s, OCH3); 13C-NMR (CD3OD): δ 136.3 (C-2), 142.5 (C-3), 139.7 (C-5), 113.6 (C-6), 116.1 (C-7), 130.9 (C-8), 125.7 (C-9), 123.8 (C-10), 161.5 (C-11), 94.6 (C-12), 146.4 (C-13), 19.0 (C-14), 204.3 (C-1′), 46.0 (C-2′), 18.6 (C-3′), 14.2 (C-4′), 56.8 (OCH3); HREIMS (m/z): 282.1360 [C17H18N2O2 calcd. 282.1368]; EIMS m/z (%): 282 [M+] (30), 267 (6), 239 (100), 224 (10), 211 (2), 196 (28).
10-Isobutyryl-11-methoxy-3-methyl-β-carboline (5). 27.5 mg; mp: 273-274 oC; IR (CHCl3) νmax cm-1: 3252.2 (indole N-H), 2947.0, 2853.1 (C-H), 1656.2 (ketone C=O), 1607.5, 1524.7, 1456.5 (aromatic C=C), 1152.2 (C-O); UV (MeOH) λmax nm: 330.0, 269.7, 229.5; 1H-NMR (CD3OD): δ 8.20 (1H, d, J = 5.5 Hz, H-5), 8.04 (1H, d, J = 5.5 Hz, H-6), 8.47 (1H, s, H-9), 7.14 (1H, s, H-12), 2.86 (3H, s, H-14), 3.60 (1H, septet, J = 6.8 Hz, H-2′), 1.13 (6H, d, J = 6.8 Hz, H-3′ and H-4′), 4.02 (3H, s, OCH3); 13C-NMR (CD3OD): δ 136.4 (C-2), 142.2 (C-3), 139.2 (C-5), 113.5 (C-6), 116.3 (C-7), 130.5 (C-8), 125.8 (C-9), 124.1 (C-10), 161.4 (C-11), 94.5 (C-12), 146.4 (C-13), 19.2 (C-14), 208.4 (C-1′), 40.1 (C-2′), 18.8 (C-3′ and C-4′), 56.5 (OCH3); HREIMS (m/z): 282.1357 [C17H18N2O2 calcd. 282.1368]; EIMS m/z (%): 282 [M+] (92), 239 (100), 224 (6), 211 (8), 196 (21).
10-Valeryl-11-hydroxy-3-methyl-β-carboline (6). 26.3 mg; mp: 272-273 oC; IR (CHCl3) νmax cm-1: 3252.6 (indole N-H), 2928.0, 2860.2 (C-H), 1655.8 (ketone C=O), 1601.6, 1525.4, 1423.1 (aromatic C=C), 1152.8 (C-O); UV (MeOH) λmax nm: 330.2, 269.8, 229.6; 1H-NMR (CD3OD): δ 8.18 (1H, d, J = 5.8 Hz, H-5), 8.08 (1H, d, J = 5.8 Hz, H-6), 8.45 (1H, s, H-9), 7.12 (1H, s, H-12), 2.87 (3H, s, H-14), 3.02 (2H, t, J = 7.3 Hz, H-2′), 1.66 (2H, quintet, J = 7.3 Hz, H-3′), 1.40 (2H, sextet, J = 7.3 Hz, H-4′), 0.94 (3H, t, J = 7.3 Hz, H-5′), 4.03 (3H, s, OCH3); 13C-NMR (CD3OD): δ 136.5 (C-2), 142.6 (C-3), 139.0 (C-5), 113.8 (C-6), 116.0 (C-7), 130.7 (C-8), 126.5 (C-9), 124.2 (C-10), 161.5 (C-11), 94.7 (C-12), 146.7 (C-13), 19.4 (C-14), 204.5 (C-1′), 44.2 (C-2′), 28.1 (C-3′), 23.5 (C-4′), 14.3 (C-5′), 56.6 (OCH3); HREIMS (m/z): 296.1512 [C18H20N2O2 calcd. 296.1525]; EIMS m/z (%): 296 [M+] (12), 267 (2), 254 (14), 239 (100), 224 (8), 211 (3), 196 (7).
10-Hexanoyl-11-methoxy-3-methyl-β-carboline (7). 29.3 mg; mp: 274-275 oC; IR (CHCl3) νmax cm-1: 3251.8 (indole N-H), 2925.8, 2856.4 (C-H), 1655.2 (ketone C=O), 1602.3, 1523.3, 1458.1 (aromatic C=C), 1168.1 (C-O); UV (MeOH) λmax nm: 330.1, 269.8, 231.4; 1H-NMR (CD3OD): δ 8.19 (1H, d, J = 5.4 Hz, H-5), 8.03 (1H, d, J = 5.4 Hz, H-6), 8.45 (1H, s, H-9), 7.12 (1H, s, H-12), 2.85 (3H, s, H-14), 3.02 (2H, t, J = 7.4 Hz, H-2′), 1.68 (2H, quintet, J = 7.4 Hz, H-3′), 1.36 (4H, m, H-4′ and H-5′), 0.91 (3H, t, J = 7.4 Hz, H-6′), 4.01 (3H, s, OCH3); 13C-NMR (CD3OD): δ 137.1 (C-2), 142.7 (C-3), 139.1 (C-5), 113.7 (C-6), 116.2 (C-7), 130.6 (C-8), 125.8 (C-9), 124.0 (C-10), 161.6 (C-11), 94.5 (C-12), 146.5 (C-13), 19.6 (C-14), 204.8 (C-1′), 44.5 (C-2′), 25.7 (C-3′), 32.8 (C-4′), 23.6 (C-5′), 14.3 (C-6′), 56.3 (OCH3); HREIMS (m/z): 310.1670 [C19H22N2O2 calcd. 310.1681]; EIMS m/z (%) : 310 [M+] (8), 267 (4), 254 (18), 239 (100), 224 (8), 211 (2), 196 (7).
10-Heptanoyl-11-methoxy-3-methyl-β-carboline (8). 40.9 mg; mp: 277-278 oC; IR (CHCl3) νmax cm-1: 3255.6 (indole N-H), 2923.5, 2858.1 (C-H), 1656.8 (ketone C=O), 1608.2, 1526.1, 1453.1 (aromatic C=C), 1150.2 (C-O); UV (MeOH) λmax nm: 330.2, 269.3, 231.8; 1H-NMR (CD3OD): δ 8.21 (1H, d, J = 5.4 Hz, H-5), 8.05 (1H, d, J = 5.4 Hz, H-6), 8.47 (1H, s, H-9), 7.15 (1H, s, H-12), 2.87 (3H, s, H-14), 2.99 (2H, t, J = 7.2 Hz, H-2′), 1.66 (2H, m, H-3′), 1.32 (6H, m, H-4′, H-5′ and H-6′), 0.90 (3H, t, J = 7.2 Hz, H-7′), 3.99 (3H, s, OCH3); 13C-NMR (CD3OD): δ 136.9 (C-2), 142.5 (C-3), 139.3 (C-5), 113.5 (C-6), 116.3 (C-7), 130.6 (C-8), 126.0 (C-9), 124.3 (C-10), 162.0 (C-11), 94.7 (C-12), 146.7 (C-13), 19.7 (C-14), 204.1 (C-1′), 44.6 (C-2′), 24.2 (C-3′), 30.3 (C-4′), 32.2 (C-5′), 23.2 (C-6′), 14.6 (C-7′), 56.6 (OCH3); HREIMS (m/z): 324.1851 [C20H24N2O2 calcd. 324.1838]; EIMS m/z (%): 324 [M+] (14), 267 (5), 254 (22) 239 (100), 224 (8), 211 (3), 196 (9).
10-Capryloyl-11-methoxy-3-methyl-β-carboline (9). 49.6 mg; mp: 280-281 oC; IR (CHCl3) νmax cm-1: 3250.2 (indole N-H), 2925.8, 2856.4 (C-H), 1657.1 (ketone C=O), 1607.8, 1521.8, 1454.8 (aromatic C=C), 1152.4 (C-O); UV (MeOH) λmax nm: 330.8, 270.1, 232.2; 1H-NMR (CD3OD): δ 8.22 (1H, d, J = 5.6 Hz, H-5), 8.06 (1H, d, J = 5.6 Hz, H-6), 8.46 (1H, s, H-9), 7.13 (1H, s, H-12), 2.89 (3H, s, H-14), 3.04 (2H, t, J = 7.3 Hz, H-2′), 1.69 (2H, quintet, J = 7.3 Hz, H-3′), 1.35 (2H, quintet, J = 7.3 Hz, H-4′), 1.33 (6H, m, H-5′, H-6′ and H-7′), 0.88 (3H, t, J = 7.3 Hz, H-8′), 4.05 (3H, s, OCH3); 13C-NMR (CD3OD): δ 136.1 (C-2), 142.6 (C-3), 139.2 (C-5), 113.8 (C-6), 116.1 (C-7), 130.5 (C-8), 126.1 (C-9), 124.2 (C-10), 161.4 (C-11), 94.8 (C-12), 146.6 (C-13), 19.5 (C-14), 204.5 (C-1′), 43.9 (C-2′), 25.1 (C-3′)*, 29.8 (C-4′)**, 29.6 (C-5′)**, 31.9 (C-6′), 25.4 (C-7′)*, 14.5 (C-8′), 56.7 (OCH3) (*,** values may be interchanged); HREIMS (m/z): 338.1985 [C21H26N2O2 calcd. 338.1994]; EIMS m/z (%): 338 [M+] (6), 267 (5), 254 (21), 239 (100), 224 (10), 211 (8), 196 (6).
12-Acetyl-11-methoxy-3-methyl-β-carboline (10). 15.0 mg; mp: 283-284 oC; IR (CHCl3) νmax cm-1: 3388.7 (indole N-H), 2922, 2848.7 (C-H), 1648.2 (ketone C=O), 1608.3, 1545.7, 1427.2 (aromatic C=C), 1151.6 (C-O); UV (MeOH) λmax nm: 361.8, 321.3, 269.7, 232.5; 1H-NMR (CDCl3): δ 8.35 (1H, d, J = 5.3 Hz, H-5), 7.83 (1H, d, J = 5.3 Hz, H-6), 8.23 (1H, d, J = 8.6 Hz, H-9), 6.99 (1H, d, J = 8.6 Hz, H-10), 2.95 (3H, s, H-14), 2.78 (3H, s, H-2′), 4.09 (3H, s, OCH3), 11.17 (1H, br.s, indole N-H); 13C-NMR (CDCl3): δ 134.2 (C-2), 137.9 (C-3), 131.2 (C-5), 113.9 (C-6), 115.9 (C-7), 131.8 (C-8), 129.4 (C-9), 107.7 (C-10), 163.8 (C-11), 109.7 (C-12), 145.0 (C-13), 16.2 (C-14), 203.2 (C-1′), 33.6 (C-2′), 56.6 (OCH3); HREIMS (m/z): 254.1042 [C15H14N2O2 calcd. 254.1055]; EIMS m/z (%): 254 [M+] (96), 239 (100), 224 (31), 211 (3), 196 (33).
12-Propionyl-11-methoxy-3-methyl-β-carboline (11). 15.7 mg; mp: 284-285 oC; IR (CHCl3) νmax cm-1: 3388.2 (indole N-H), 2934.1, 2841.2 (C-H), 1648.7 (ketone C=O), 1607.2, 1545.7, 1472.1 (aromatic C=C), 1152.4 (C-O); UV (MeOH) λmax nm: 361.4, 321.6, 269.4, 232.5; 1H-NMR (CD3OD): Table 2; 13C-NMR (CD3OD): Table 3; HREIMS (m/z): 268.1223 [C16H16N2O2 calcd. 268.1212]; EIMS m/z (%): 268 [M+] (46,), 253 (4), 239 (100), 224 (31), 211 (4), 196 (29).
12-Butyryl-11-methoxy-3-methyl-β-carboline (12). 10.5 mg; mp: 287-288 oC; IR (CHCl3) νmax cm-1: 3390.1 (indole N-H) 2956.7, 2871.8 (C-H), 1647.9 (ketone C=O), 1610.3, 1544.5, 1434.9 (aromatic C=C), 1152.4 (C-O); UV (MeOH) λmax nm: 361.2, 321.4, 269.8, 232.4 nm; 1H-NMR (CDCl3): δ 8.33 (1H, d, J = 5.4 Hz, H-5), 7.81 (1H, d, J = 5.4 Hz, H-6), 8.19 (1H, d, J = 8.7 Hz, H-9), 6.95 (1H, d, J = 8.7 Hz, H-10), 2.98 (3H, s, H-14), 3.14 (2H, t, J = 7.3 Hz, H-2′), 1.79 (2H, sextet, J = 7.3 Hz, H-3′), 1.03 (3H, t, J = 7.3 Hz, H-4′), 4.06 (3H, s, OCH3), 11.16 (1H, br.s, indole N-H); 13C-NMR (CDCl3): δ 134.4 (C-2), 138.1 (C-3), 131.0 (C-5), 113.9 (C-6), 116.0 (C-7), 131.9 (C-8), 129.3 (C-9), 107.5 (C-10), 163.6 (C-11), 109.8 (C-12), 145.0 (C-13), 16.4 (C-14), 203.3 (C-1′), 45.3 (C-2′), 18.0 (C-3′), 14.2 (C-4′), 56.9 (OCH3); HREIMS (m/z): 282.1377 [C17H18N2O2 calcd. 282.1368]; EIMS m/z (%): 282 [M+] (32), 267 (8), 239 (100), 224 (17), 211 (3), 196 (28).
12-Isobutyryl-11-methoxy-3-methyl-β-carboline (13). 16.6 mg; mp: 290-291 oC; IR (CHCl3) νmax cm-1: 3384.1 (indole N-H), 2927.2, 2857.2 (C-H), 1648.9 (ketone C=O), 1614.2, 1544.7, 1460.6 (aromatic C=C), 1151.3 (C-O); UV (MeOH) λmax nm: 361.3, 321.4, 269.4, 232.2; 1H-NMR (CDCl3): δ 8.34 (1H, d, J = 5.5 Hz, H-5), 7.80 (1H, d, J = 5.5 Hz, H-6), 8.21 (1H, d, J = 8.7 Hz, H-9), 6.98 (1H, d, J = 8.7 Hz, H-10), 2.96 (3H, s, H-14), 3.88 (1H, septet, J = 6.7 Hz, H-2′), 1.23 (6H, d, J = 6.7 Hz, H-3′ and H-4′), 4.08 (3H, s, OCH3), 11.21 (1H, br.s, indole N-H); 13C-NMR (CDCl3): δ 134.2 (C-2), 138.1 (C-3), 131.3 (C-5), 113.6 (C-6), 116.2 (C-7), 131.8 (C-8), 129.2 (C-9), 107.5 (C-10), 163.8 (C-11), 109.6 (C-12), 145.1 (C-13), 16.1 (C-14), 207.4 (C-1′), 40.7 (C-2′), 18.8 (C-3′and C-4′), 56.8 (OCH3); HREIMS (m/z): 282.1362 [C17H18N2O2 calcd. 282.1368]; EIMS m/z (%): 282 [M+] (94), 239 (100), 224 (8), 211 (6), 196 (17).
12-Valeryl-11-methoxy-3-methyl-β-carboline (14). 14.1 mg; mp: 289-290 oC; IR (CHCl3) νmax cm-1: 3385.1 (indole N-H), 2928.1, 2861.5 (C-H), 1648.8 (ketone C=O), 1612.5, 1543.9, 1416.2 (aromatic C=C), 1152.2 (C-O); UV (MeOH) λmax nm: 361.2, 321.8, 269.4, 232.6; 1H-NMR (CDCl3): δ 8.34 (1H, d, J = 5.3 Hz, H-5), 7.84 (1H, d, J = 5.3 Hz, H-6), 8.25 (1H, d, J = 8.7 Hz, H-9), 7.03 (1H, d, J = 8.7 Hz, H-10), 3.02 (3H, s, H-14), 3.16 (2H, t, J = 7.2 Hz, H-2′), 1.73 (2H, quintet, J = 7.2 Hz, H-3′), 1.45 (2H, sextet, J = 7.2 Hz, H-4′), 0.97 (3H, t, J = 7.2 Hz, H-5′), 4.10 (3H, s, OCH3), 11.26 (1H, br.s, indole N-H); 13C-NMR (CDCl3): δ 134.2 (C-2), 138.4 (C-3), 131.4 (C-5), 113.8 (C-6), 116.0 (C-7), 132.1 (C-8), 129.4 (C-9), 107.6 (C-10), 163.9 (C-11), 110.1 (C-12), 144.9 (C-13), 16.2 (C-14), 203.2 (C-1′), 45.0 (C-2′), 26.5 (C-3′), 22.6 (C-4′), 14.0 (C-5′), 56.7 (OCH3); HREIMS (m/z): 296.1514 [C18H20N2O2 calcd. 296.1525]; EIMS m/z (%): 296 [M+] (86), 267 (39), 254 (52), 239 (100), 224 (19), 211 (2), 196 (10).
12-Hexanoyl-11-methoxy-3-methyl-β-carboline (15). 18.4 mg; mp: 292-293 oC; IR (CHCl3) νmax cm-1: 3385.0 (indole N-H), 2924.3, 2854.1 (C-H), 1648.8 (ketone C=O), 1614.5, 1546.4, 1460.0 (aromatic C=C), 1151.8 (C-O); UV (MeOH) λmax nm: 361.2, 321.5, 269.3, 232.8; 1H-NMR (CDCl3):δ 8.35 (1H, d, J = 5.4 Hz, H-5), 7.86 (1H, d, J = 5.4 Hz, H-6), 8.20 (1H, d, J = 8.6 Hz, H-9), 6.95 (1H, d, J = 8.6 Hz, H-10), 2.97 (3H, s, H-14), 3.15 (2H, t, J = 7.3 Hz, H-2′), 1.75 (2H, quintet, J = 7.3 Hz, H-3′), 1.40 (4H, m, H-4′ and H-5′), 0.94 (3H, t, J = 7.3 Hz, H-6′), 4.07 (3H, s, OCH3), 11.25 (1H, br.s, indole N-H); 13C-NMR (CDCl3): δ 134.3 (C-2), 138.0 (C-3), 130.6 (C-5), 113.8 (C-6), 116.0 (C-7), 131.7 (C-8), 129.3 (C-9), 107.6 (C-10), 163.8 (C-11), 109.9 (C-12), 145.0 (C-13), 16.1 (C-14), 203.0 (C-1′), 44.2 (C-2′), 23.2 (C-3′), 31.1 (C-4′), 22.9 (C-5′), 14.2 (C-6′), 56.8 (OCH3); HREIMS (m/z): 310.1690 [C19H22N2O2 calcd. 310.1681]; EIMS m/z (%): 310 [M+] (26), 267 (6), 254 (11), 239 (100), 224 (12), 211 (6), 196 (8).
12-Heptanoyl-11-methoxy-3-methyl-β-carboline (16). 18.0 mg; mp: 296-297 oC; IR (CHCl3) νmax cm-1: 3384.5 (indole N-H), 2926.1, 2857.4 (C-H), 1648.2 (ketone C=O), 1608.2, 1542.9, 1455.2 (aromatic C=C), 1151.2 (C-O); UV (MeOH) λmax nm: 361.8, 321.2, 269.3, 232.1; 1H-NMR (CDCl3): δ 8.35 (1H, d, J = 4.7 Hz, H-5), 7.85 (1H, d, J = 4.7 Hz, H-6), 8.27 (1H, d, J = 8.7 Hz, H-9), 7.02 (1H, d, J = 8.7 Hz, H-10), 3.05 (3H, s, H-14), 3.15 (2H, t, J = 7.3 Hz, H-2′), 1.74 (2H, quintet, J = 7.3 Hz, H-3′), 1.40 (2H, quintet, J = 7.3 Hz, H-4′), 1.34 (4H, m, H-5′ and H-6′), 0.89 (3H, t, J = 7.3 Hz, H-7′), 4.11 (3H, s, OCH3), 11.17 (1H, br.s, indole N-H); 13C-NMR (CDCl3): δ 134.2 (C-2), 137.9 (C-3), 131.0 (C-5), 114.0 (C-6), 115.7 (C-7), 131.8 (C-8), 129.4 (C-9), 107.5 (C-10), 163.8 (C-11), 110.0 (C-12), 145.1 (C-13), 16.0 (C-14), 203.4 (C-1′), 44.3 (C-2′), 24.1 (C-3′), 30.2 (C-4′), 32.2 (C-5′), 23.2 (C-6′), 14.4 (C-7′), 56.9 (OCH3); HREIMS (m/z): 324.1826 [C20H24N2O2 calcd. 324.1838]; EIMS m/z (%): 324 [M+] (84), 267 (53), 254 (66), 239 (100), 224 (12), 211 (7), 196 (8).
12-Capryloyl-11-methoxy-3-methyl-β-carboline (17). 18.3 mg; mp: 296-297 oC; IR (CHCl3) νmax cm-1: 3382.9 (indole N-H), 2923.9, 2854.5 (C-H), 1647.1 (ketone C=O), 1612.1, 1545.6, 1458.1 (aromatic C=C), 1153.2 (C-O); UV (MeOH) λmax nm: 361.2, 321.5, 269.3, 232.4; 1H-NMR (CDCl3): δ 8.35 (1H, d, J = 5.2 Hz, H-5), 7.83 (1H, d, J = 5.2 Hz, H-6), 8.25 (1H, d, J = 8.7 Hz, H-9), 7.01 (1H, d, J = 8.7 Hz, H-10), 3.02 (3H, s, H-14), 3.16 (2H, t, J = 7.3 Hz, H-2′), 1.74 (2H, quintet, J = 7.3 Hz, H-3′), 1.37 (2H, quintet, J = 7.3 Hz, H-4′), 1.30 (6H, m, H-5′, H-6′ and H-7′), 0.86 (3H, t, J = 7.1 Hz, H-8′), 4.12 (3H, s, OCH3), 11.23 (1H, br.s, indole N-H); 13C-NMR (CDCl3): δ 134.2 (C-2), 137.7 (C-3), 130.4 (C-5), 114.0 (C-6), 115.7 (C-7), 132.3 (C-8), 129.5 (C-9), 107.8 (C-10), 163.9 (C-11), 110.2 (C-12), 145.1 (C-13), 15.7 (C-14), 203.1 (C-1′), 45.4 (C-2′), 24.3 (C-3′), 29.4 (C-4′)*, 29.3 (C-5′)*, 31.8 (C-6′), 22.6 (C-7′), 14.1 (C-8′), 56.9 (OCH3) (* values may be interchanged); HREIMS (m/z): 338.1988 [C21H26N2O2 calcd. 338.1994]; EIMS m/z (%): 338 [M+] (70), 267 (18), 254 (48), 239 (100), 224 (10), 211 (5), 196 (5).
10-Propionyl-11-hydroxy-3-methyl-β-carboline (18). 28.5 mg; mp: 322-323 oC; IR (CHCl3) νmax cm-1: 3378.2 (OH and indole N-H), 2932.3, 2845.2 (C-H), 1646.8 (ketone C=O), 1612.1, 1535.3, 1443.1 (aromatic C=C), 1153.4 (C-O); UV (MeOH) λmax nm: 347.2, 340.4, 275.2, 236.3; 1H-NMR (CD3OD): Table 2; 13C-NMR (CD3OD): Table 3; HREIMS (m/z): 254.1070 [C15H14N2O2 calcd. 254.1055]; EIMS m/z (%): 254 [M+] (79), 236 (9), 225 (100), 197 (6).
10-Butyryl-11-hydroxy-3-methyl-β-carboline (19). 8.8 mg; mp: 323-324 oC; IR (CHCl3) νmax cm-1: 3379.5 (OH and indole N-H), 2954.3, 2863.1 (C-H), 1646.6 (ketone C=O), 1608.7, 1536.5, 1432.1 (aromatic C=C), 1158.3 (C-O); UV (MeOH) λmax nm: 347.4, 340.2, 275.3, 236.5; 1H-NMR (CD3OD): δ 8.22 (1H, d, J = 5.6 Hz, H-5), 8.08 (1H, d, J = 5.6 Hz, H-6), 8.89 (1H, s, H-9), 6.94 (1H, s, H-12), 2.82 (3H, s, H-14), 3.20 (2H, t, J = 7.3 Hz, H-2′), 1.85 (2H, sextet, J = 7.4 Hz, H-3′), 1.08 (3H, t, J = 7.3 Hz, H-4′); 13C-NMR (CD3OD): δ 137.2 (C-2), 142.3 (C-3), 139.2 (C-5), 113.6 (C-6), 115.7 (C-7), 131.3 (C-8), 127.2 (C-9), 116.2 (C-10), 164.2 (C-11), 98.5 (C-12), 147.9 (C-13), 19.3 (C-14), 208.0 (C-1′), 38.2 (C-2′), 18.7 (C-3′), 14.3 (C-4′); HREIMS (m/z): 268.1220 [C16H16N2O2 calcd. 268.1212]; EIMS m/z (%): 268 [M+] (28), 253 (7), 240 (20), 225 (100), 197 (4).
10-Isobutyryl-11-hydroxy-3-methyl-β-carboline (20). 20.2 mg; mp: 326-327 oC; IR (CHCl3) νmax cm-1: 3378.2 (OH and indole N-H), 2925.1, 2854.9 (C-H), 1647.2 (ketone C=O), 1608.1, 1537.1, 1458.3 (aromatic C=C), 1158.2 (C-O); UV (MeOH) λmax nm: 347.5, 340.2, 275.1, 236.4; 1H-NMR (CD3OD): δ 8.18 (1H, d, J = 5.4 Hz, H-5), 7.97 (1H, d, J = 5.4 Hz, H-6), 8.83 (1H, s, H-9), 6.91 (1H, s, H-12), 2.77 (3H, s, H-14), 3.93 (1H, septet, J = 6.8 Hz, H-2′), 1.29 (6H, d, J = 6.8 Hz, H-3′ and H-4′); 13C-NMR (CD3OD): δ 137.4 (C-2), 141.8 (C-3), 138.7 (C-5), 114.2 (C-6), 115.0 (C-7), 131.6 (C-8), 127.4 (C-9), 116.2 (C-10), 165.4 (C-11), 98.9 (C-12), 148.3 (C-13), 18.8 (C-14), 212.0 (C-1′), 35.9 (C-2′), 20.1 (C-3′ and C-4′); HREIMS (m/z): 268.1218 [C16H16N2O2 calcd. 268.1212]; EIMS m/z (%): 268 [M+] (97), 253 (12), 225 (100), 197 (4).
10-Hexanoyl-11-hydroxy-3-methyl-β-carboline (21). 14.2 mg; mp: 327-328 oC; IR (CHCl3) νmax cm-1: 3373.2 (OH and indole N-H), 2923.9, 2854.5 (C-H), 1645.2 (ketone C=O), 1610.8, 1536.6, 1461.9 (aromatic C=C), 1199.6 (C-O); UV (MeOH) λmax nm: 347.6, 340.0, 275.0, 236.2; 1H-NMR (CD3OD): δ 8.20 (1H, d, J = 5.2 Hz, H-5), 8.00 (1H, d, J = 5.2 Hz, H-6), 8.83 (1H, s, H-9), 6.91 (1H, s, H-12), 2.78 (3H, s, H-14), 3.20 (2H, t, J = 7.3 Hz, H-2′), 1.80 (2H, quintet, J = 7.3 Hz, H-3′), 1.43 (4H, m, H-4′ and H-5′), 0.95 (3H, t, J = 7.3 Hz, H-6′); 13C-NMR (CD3OD): δ 137.4 (C-2), 142.5 (C-3), 139.5 (C-5), 113.8 (C-6), 115.7 (C-7), 131.2 (C-8), 127.3 (C-9), 116.4 (C-10), 164.6 (C-11), 98.5 (C-12), 147.9 (C-13), 19.5 (C-14), 208.1 (C-1′), 38.9 (C-2′), 25.8 (C-3′), 32.6 (C-4′), 23.6 (C-5′), 14.3 (C-6′); HREIMS (m/z): 296.1518 [C18H20N2O2 calcd. 296.1525]; EIMS m/z (%): 296 [M+] (34), 278 (10), 253 (17), 240 (25), 225 (100), 197 (6).
10-Heptanoyl-11-hydroxy-3-methyl-β-carboline (22). 8.6 mg; mp: 329-330 oC; IR (CHCl3) νmax cm-1: 3375.4 (OH and indole N-H), 2924.2, 2856.1 (C-H), 1646.4 (ketone C=O), 1608.7, 1536.2, 1422.7 (aromatic C=C), 1182.1 (C-O); UV (MeOH) λmax nm: 347.1, 339.9, 275.1, 236.3; 1H-NMR (CD3OD): δ 8.17 (1H, d, J = 5.7 Hz, H-5), 7.97 (1H, d, J = 5.7 Hz, H-6), 8.88 (1H, s, H-9), 6.92 (1H, s, H-12), 2.85 (3H, s, H-14), 3.07 (2H, t, J = 7.3 Hz, H-2′), 1.72 (2H, quintet, J = 7.3 Hz, H-3′), 1.37 (2H, quintet, J = 7.3 Hz, H-4′), 1.27 (4H, m, H-5′ and H-6′), 0.81 (3H, t, J = 7.3 Hz, H-7′); 13C-NMR (CD3OD): δ 137.5 (C-2), 142.3 (C-3), 139.5 (C-5), 113.7 (C-6), 115.8 (C-7), 131.1 (C-8), 127.2 (C-9), 116.3 (C-10), 164.3 (C-11), 98.4 (C-12), 147.6 (C-13), 19.4 (C-14), 207.9 (C-1′), 38.4 (C-2′), 24.4 (C-3′), 29.2 (C-4′), 31.9 (C-5′), 22.9 (C-6′), 14.7 (C-7′); HREIMS (m/z): 310.1673 [C19H22N2O2 calcd. 310.1681]; EIMS m/z (%): 310 [M+] (79), 292 (55), 253 (57), 240 (35), 225 (100), 197 (10).
10,12-Diacetyl-11-hydroxy-3-methyl-β-carboline (23). 17.0 mg; mp: 328-329 oC; IR (CHCl3) νmax cm‑1: 3384.2 (OH and indole N-H), 2928.0, 2850.1 (C-H), 1644.2 (ketone C=O), 1582.4, 1494.6, 1426.5 (aromatic C=C), 1189.7 (C-O); UV (MeOH) λmax nm: 364.5, 279.7, 230.2; 1H-NMR (CDCl3): δ 8.40 (1H, d, J = 5.3 Hz, H-5), 7.79 (1H, d, J = 5.3 Hz, H-6), 8.69 (1H, s, H-9), 2.88 (3H, s, H-14), 2.78 (3H, s, H-2′), 2.84 (3H, s, H-2′′), 14.67 (1H, s, OH), 11.33 (1H, br.s, indole N-H); 13C-NMR (CDCl3): δ 135.1 (C-2), 140.9 (C-3), 137.9 (C-5), 112.9 (C-6), 114.5 (C-7), 130.2 (C-8), 130.5 (C-9), 114.6 (C-10), 166.9 (C-11), 109.0 (C-12), 146.6 (C-13), 18.5 (C-14), 206.6 (C-1′), 32.2 (C-2′), 203.3 (C-1′′), 36.9 (C-2′′); HREIMS (m/z): 282.1012 [C16H14N2O3 calcd. 282.1004]; EIMS m/z (%): 282 [M+] (91), 267 (100), 251 (18), 249 (32), 239 (4), 237 (18).
10,12-Dipropionyl-11-hydroxy-3-methyl-β-carboline (24). 16.6 mg; mp: 330-331 oC; IR (CHCl3) νmax cm-1: 3383.2 (OH and indole N-H), 2927.2, 2851.0 (C-H), 1646.1 (ketone C=O), 1580.4, 1493.8, 1461.3 (aromatic C=C), 1189.2 (C-O); UV (MeOH) λmax nm: 366.2, 279.8, 230.2; 1H-NMR (CD3OD): Table 2; 13C-NMR (CD3OD): Table 3; HREIMS (m/z): 310.1325 [C18H18N2O3 calcd. 310.1317]; EIMS m/z (%): 310 [M+] (100), 292 (12), 281 (98), 253 (5), 251 (19), 237 (24).
10,12-Dibutyryl-11-hydroxy-3-methyl-β-carboline (25). 15.5 mg; mp: 331-332 oC; IR (CHCl3) νmax cm-1: 3383.5 (OH and indole N-H), 2926.5, 2856.5 (C-H), 1646.2 (ketone C=O), 1580.2, 1494.3, 1416.2 (aromatic C=C), 1188.5 (C-O); UV (MeOH) λmax nm: 366.2, 279.7, 230.0; 1H-NMR (CDCl3): δ 8.41 (1H, d, J = 5.3 Hz, H-5), 7.82 (1H, d, J = 5.3 Hz, H-6), 8.69 (1H, s, H-9), 2.87 (3H, s, H-14), 3.14 (2H, t, J = 7.3 Hz, H-2′), 1.88 (2H, sextet, J = 7.3 Hz, H-3′), 1.08 (3H, t, H-4′), 3.24 (2H, t, J = 7.3 Hz, H-2′′), 1.79 (2H, sextet, J = 7.3 Hz, H-3′′), 1.04 (3H, t, J = 7.3 Hz, H-4′′), 14.74 (1H, s, OH), 11.28 (1H, br.s, indole N-H); 13C-NMR (CDCl3): δ 135.2 (C-2), 141.2 (C-3), 137.7 (C-5), 112.8 (C-6), 114.6 (C-7)*, 130.6 (C-8 and C-9), 114.8 (C-10)*, 167.0 (C-11), 108.9 (C-12), 146.7 (C-13), 18.5 (C-14), 206.7 (C-1′), 40.3 (C-2′), 18.3 (C-3′), 14.0 (C-4′)**, 203.1 (C-1′′), 47.2 (C-2′′), 17.6 (C-3′′), 13.9 (C-4′′)** (*,** values may be interchanged); HREIMS (m/z): 338.1625 [C20H22N2O3 calcd. 338.1630]; EIMS m/z (%): 338 [M+] (63), 323 (10), 295 (100), 282 (30), 277 (24), 267 (16), 251 (16), 237 (22).
10,12-Diisobutyryl-11-hydroxy-3-methyl-β-carboline (26). 12.6 mg; mp: 333-334 oC; IR (CHCl3) νmax cm-1: 3385.1 (OH and indole N-H), 2926.0, 2854.0 (C-H), 1645.1 (ketone C=O), 1581.2, 1494.5, 1455.2 (aromatic C=C), 1187.2 (C-O); UV (MeOH) λmax nm: 365.8, 279.8, 230.1; 1H-NMR (CDCl3): δ 8.41 (1H, d, J = 5.3 Hz, H-5), 7.82 (1H, d, J = 5.3 Hz, H-6), 8.75 (1H, s, H-9), 2.88 (3H, s, H-14), 3.89 (1H, septet, J = 7.3 Hz, H-2′), 1.33 (6H, d, J = 7.3 Hz, H-3′ and H-4′), 3.98 (1H, septet, J = 7.3 Hz, H-2′′), 1.26 (6H, d, J = 7.3 Hz, H-3′′′and H-4′′), 14.71 (1H, s, OH), 11.41 (1H, br.s, indole N-H); 13C-NMR (CDCl3): δ 135.1 (C-2), 141.1 (C-3), 137.8 (C-5), 112.9 (C-6), 114.4 (C-7), 130.2 (C-8), 130.7 (C-9), 114.5 (C-10), 166.9 (C-11), 108.8 (C-12), 146.5 (C-13), 18.6 (C-14), 211.8 (C-1′), 36.8 (C-2′), 19.3 (C-3′ and C-4′), 207.2 (C-1′′), 40.4 (C-2′′), 19.1 (C-3′′ and ′C-4′′); HREIMS (m/z): 338.1644 [C20H22N2O3 calcd. 338.1630]; EIMS m/z (%): 338 [M+] (36), 295 (100), 277 (45), 251 (22), 237 (26).
10,12-Divaleryl-11-hydroxy-3-methyl-β-carboline (27). 25.5 mg; mp: 332-333 oC; IR (CHCl3) νmax cm-1: 3383.0 (OH and indole N-H), 2927.4, 2862.8 (C-H), 1644.2 (ketone C=O), 1582.4, 1495.3, 1418.7 (aromatic C=C), 1199.8 (C-O); UV (MeOH) λmax nm: 364.8, 279.8, 230.0; 1H-NMR (CDCl3): δ 8.43 (1H, d, J = 5.3 Hz, H-5), 7.89 (1H, d, J = 5.3 Hz, H-6), 8.74 (1H, s, H-9), 2.93 (3H, s, H-14), 3.16 (2H, t, J = 7.3 Hz, H-2′), 1.80 (2H, quintet, J = 7.3 Hz, H-3′), 1.49 (2H, sextet, J = 7.3 Hz, H-4′), 0.99 (3H, t, J = 7.3 Hz, H-5′), 3.25 (2H, t, J = 7.3 Hz, H-2′′), 1.74 (2H, quintet, J = 7.3 Hz, H-3′′), 1.45 (2H, sextet, J = 7.3 Hz, H-4′′), 0.96 (3H, t, J = 7.3 Hz, H-5′′), 14.75 (1H, s, OH), 11.40 (1H, br.s, indole N-H); 13C-NMR (CDCl3): δ 135.2 (C-2), 141.0 (C-3), 137.7 (C-5), 112.8 (C-6), 114.6 (C-7), 130.0 (C-8), 130.6 (C-9), 114.6 (C-10), 166.9 (C-11), 109.0 (C-12), 146.6 (C-13), 18.5 (C-14), 206.8 (C-1′), 38.1 (C-2′), 26.3 (C-3′), 22.5 (C-4′)*, 14.0 (C-4′)**, 203.3 (C-1′′), 44.9 (C-2′′), 26.9 (C-3′′), 22.4 (C-4′′)*, 13.9 (C-5′′)** (*,** values may be inter-changed); HREIMS (m/z): 366.1935 [C22H26N2O3 calcd. 366.1943]; EIMS m/z (%): 366 [M+] (20), 348 (24), 337 (77), 324 (25), 309 (100), 295 (22), 282 (16), 267 (20), 251 (18), 237 (25).
10,12-Dihexanoyl-11-hydroxy-3-methyl-β-carboline (28). 25.1 mg; mp: 335-336 oC; IR (CHCl3) νmax cm-1: 3384.2 (OH and indole N-H), 2924.6, 2855.2 (C-H), 1645.2 (ketone C=O), 1581.2, 1494.8, 1456.3 (aromatic C=C), 1189.2 (C-O); UV (MeOH) λmax nm: 364.9, 279.6, 230.2; 1H-NMR (CDCl3): δ 8.40 (1H, d, J = 5.2 Hz, H-5), 7.81 (1H, d, J = 5.2 Hz, H-6), 8.70 (1H, s, H-9), 2.89 (3H, s, H-14), 3.10 (2H, t, J = 7.3 Hz, H-2′), 1.81 (2H, quintet, J = 7.3 Hz, H-3′), 1.36 (8H, m, H-4′, H-5′, H-4′′′and H-5′′), 0.93 (3H, t, J = 6.8 Hz, H-6′), 3.21 (2H, t, J = 7.3 Hz, H-2′′), 1.74 (2H, quintet, J = 7.3 Hz, H-3′′), 0.91 (3H, t, J = 6.8 Hz, H-6′′), 14.69 (1H, s, OH), 11.31 (1H, br.s, indole N-H); 13C-NMR (CDCl3): δ 135.0 (C-2), 141.1 (C-3), 137.9 (C-5), 112.8 (C-6), 114.5 (C-7), 130.0 (C-8), 130.6 (C-9), 114.7 (C-10), 167.0 (C-11), 108.9 (C-12), 146.4 (C-13), 18.4 (C-14), 206.6 (C-1′), 38.3 (C-2′), 25.7 (C-3′), 32.9 (C-4′)*, 23.8 (C-5′)**, 14.2 (C-6′)ψ, 203.5 (C-1′′), 45.1 (C-2′′), 25.5 (C-3′′), 32.8 (C-4′′)*, 23.7 (C-5′′)**, 14.1 (C-6′′)ψ (*,**,Ψ values may be inter-changed); HREIMS (m/z): 394.2244 [C24H30N2O3 calcd. 394.2256]; EIMS m/z (%): 394 [M+] (100), 376 (32), 351 (87), 338 (6), 323 (98), 295 (30), 282 (19), 267 (13), 251 (21), 237 (18).
10,12-Diheptanoyl-11-hydroxy-3-methyl-β-carboline (29). 27.1 mg; mp: 336-337 oC; IR (CHCl3) νmax cm-1: 3383.8 (OH and indole N-H), 2925.3, 2855.4 (C-H), 1644.2 (ketone C=O), 1580.0, 1495.5, 1450.1 (aromatic C=C), 1201.1 (C-O); UV (MeOH) λmax nm: 366.8, 284.6, 231.8; 1H-NMR (CDCl3): δ 8.43 (1H, d, J = 5.3 Hz, H-5), 7.85 (1H, d, J = 5.3 Hz, H-6), 8.72 (1H, s, H-9), 2.92 (3H, s, H-14), 3.15 (2H, t, J = 7.3 Hz, H-2′), 1.82 (2H, quintet, J = 7.3 Hz, H-3′), 1.45 (2H, m, H-4′), 1.34 (8H, m, H-5′, H-6′, H-5′′ and ′H-6′′), 0.90 (3H, t, J = 6.8 Hz, H-7′), 3.25 (2H, t, J = 7.3 Hz, H-2′′), 1.75 (2H, quintet, J = 7.3 Hz, H-3′′), 1.42 (2H, m, H-4′′), 0.89 (3H, t, J = 6.8 Hz, H-7′′), 14.75 (1H, s, OH), 11.38 (1H, br.s, indole N-H); 13C-NMR (CDCl3): δ 135.1 (C-2), 140.9 (C-3), 137.9 (C-5), 112.7 (C-6), 114.5 (C-7)*, 129.9 (C-8), 130.5 (C-9), 114.6 (C-10)*, 166.9 (C-11), 108.7 (C-12), 146.5 (C-13), 18.4 (C-14), 206.8 (C-1′), 38.4 (C-2′), 24.1 (C-3′), 29.1 (C-4′)**, 31.8 (C-5′)ψ, 22.6 (C-6′)ψψ, 14.1 (C-7′), 203.3 (C-1′′), 45.3 (C-2′′), 24.7 (C-3′′), 28.9 (C-4′′)**, 31.6 (C-5′′)ψ, 22.5 (C-6′′)ψψ, 14.0 (C-7′′)(*,**,Ψ,ΨΨ, values may be interchanged); HREIMS (m/z): 422.2581 [C26H34N2O3 calcd. 422.2569]; EIMS m/z (%): 422 [M+] (100), 404 (25), 365 (57), 352 (24), 337 (94), 309 (2), 295 (25), 282 (27), 267 (37), 251 (24), 237 (28).
10,12-Dicapryloyl-11-hydroxy-3-methyl-β-carboline (30). 27.1 mg; mp: 339-340 oC; IR (CHCl3) νmax cm-1: 3381.0 (OH and indole N-H), 2925.8, 2858.3 (C-H), 1643.2 (ketone C=O), 1579.6, 1496.8, 1377.2 (aromatic C=C), 1202.8 (C-O); UV (MeOH) λmax nm: 365.9, 283.8, 231.6; 1H-NMR (CDCl3): δ 8.41 (1H, d, J = 5.4 Hz, H-5), 7.82 (1H, d, J = 5.4 Hz, H-6), 8.71 (1H, s, H-9), 2.91 (3H, s, H-14), 3.15 (2H, t, J = 7.3 Hz, H-2′), 1.80 (2H, quintet, J = 7.3 Hz, H-3′), 1.43 (2H, m, H-4′), 1.30 (12H, m, H-5′, H-6′, H-7′, H-5′′′′H-6′′ and H-7′′), 0.88 (3H, t, J = 6.8 Hz, H-8′), 3.25 (2H, t, J = 7.3 Hz, H-2′′), 1.76 (2H, quintet, J = 7.3 Hz, H-3′′), 1.41 (2H, m, H-4′′), 0.87 (3H, t, J = 6.8 Hz, H-8′′), 14.75 (1H, s, OH), 11.36 (1H, br.s, indole N-H); 13C-NMR (CDCl3): δ 135.0 (C-2), 141.0 (C-3), 137.8 (C-5), 112.9 (C-6), 114.2 (C-7), 131.0 (C-8), 131.1 (C-9), 115.0 (C-10), 167.3 (C-11), 108.9 (C-12), 146.5 (C-13), 18.3 (C-14), 206.9 (C-1′), 38.5 (C-2′), 24.8 (C-3′), 29.3 (C-4′)*, 29.2 (C-5′)*, 31.8 (C-6′)**, 22.6 (C-7′ and C-7′′), 14.1 (C-8′), 203.2 (C-1′′), 45.3 (C-2′′), 24.1 (C-3′′), 29.2 (C-4′′)*, 29.1 (C-5′′)*, 31.7 (C-6′′)**, 14.1 (C-8′′) (*,** values may be interchanged); HREIMS (m/z): 450.2898 [C28H38N2O3 calcd. 450.2882]; EIMS m/z (%): 450 [M+] (98), 432 (43), 403 (6), 379 (83), 366 (51), 351 (100), 323 (2), 295 (32), 282 (26), 267 (32), 251 (14), 237 (21).
Table 2. 1H-NMR data of 10-propionyl (3), 12-propionyl (11), 10-propionyl-11-hydroxy (18) and 10,12-dipropionyl-11-hydroxy (24) analogues of harmine (1).
Table 2. 1H-NMR data of 10-propionyl (3), 12-propionyl (11), 10-propionyl-11-hydroxy (18) and 10,12-dipropionyl-11-hydroxy (24) analogues of harmine (1).
H3111824
58.21 (d, 5.7)8.35 (d, 5.5)8.15 (d, 5.3)8.42 (d, 5.3)
68.06 (d, 5.7)7.82 (d, 5.5)7.94 (d, 5.3)7.87 (d, 5.3)
98.50 (s)8.23 (d, 8.7)8.81 (s)8.72 (s)
10-6.99 (d, 8.7)--
127.16 (s)-6.91 (s)-
142.87 (s)2.97 (s)2.77 (s)2.94 (s)
2′3.06 (q, 7.3)3.19 (q, 7.1)3.20 (q,7.2)3.23 (q, 7.3)
3′1.18 (t, 7.3)1.24 (t, 7.1)1.25 (t, 7.2)1.34 (t, 7.3)
OCH34.04 (s)4.08 (s)--
2′′---3.31 (q, 7.3)
3′′---1.25 (t, 7.3)
OH--Not observed14.69 (s)
Indole N-HNot observed11.20 (br.s)Not observed11.40 (br.s)
Note: NMRs of 3 and 18 were recorded in CD3OD, whereas those of 11 and 24 were recorded in CDCl3. Assignments were established by interpretation of the 1H-NMR, HMQC, HMBC, 1H, 1H COSY, 1H,1H TOCSY, and J-resolved spectra. Values are in δ (ppm). Multiplicities and J values (in Hz) are in parentheses.
Table 3. 13C-NMR data of 10-propionyl (3), 12-propionyl (11), 10-propionyl-11-hydroxy (18) and 10,12-dipropionyl-11-hydroxy (24) analogues of harmine (1).
Table 3. 13C-NMR data of 10-propionyl (3), 12-propionyl (11), 10-propionyl-11-hydroxy (18) and 10,12-dipropionyl-11-hydroxy (24) analogues of harmine (1).
C3111824
2137.0134.3137.4135.0
3142.5138.0142.4141.0
5139.5131.5139.3137.7
6113.6113.7113.8112.8
7116.2116.1115.6114.6
8130.6131.9131.2129.9
9126.0129.4127.1130.6
10124.1107.6116.3114.5
11161.9163.5164.4167.0
1294.6109.998.5108.9
13146.8144.9147.8146.7
1419.315.819.418.3
1′204.2203.4208.2206.7
2′37.537.032.232.4
3′9.49.28.99.2
OCH356.456.7--
1′′---203.5
2′′---44.9
3′′---9.5
Note: NMRs of 3 and 18 were recorded in CD3OD, whereas those of 11 and 24 were recorded in CDCl3. Assignments were established by interpretation of the 13C-NMR (broad band decoupled and DEPT), HMQC, and HMBC spectra.

Acknowledgments

We would like to thank the Higher Education Commission (HEC), Pakistan for the award of a prestigious Split-Ph.D scholarship to Mr. Syed Nawazish Ali.

References and Notes

  1. Nagendrappa, G. Organic synthesis under solvent-free conditions: An environmentally benign procedure-1. Resonance 2002, 59–68. [Google Scholar] [CrossRef]
  2. Brown, A. R.; Hermkens, P. H. H.; Ottenheihm, H. C. J.; Rees, D. C. Solid phase synthesis. Synlett 1998, 817–827. [Google Scholar]
  3. Kaupp, G.; Schmeyers, J.; Boy, J. Waste-free solid-state synthesis with quantitative yield. Chemosphere 2001, 43, 55–61. [Google Scholar] [CrossRef]
  4. Tanaka, K.; Toda, F. Solvent-free organic synthesis. Chem. Rev. 2000, 100, 1025–1074. [Google Scholar] [CrossRef]
  5. Olah, G. A. Friedel-Crafts and Related Reactions; Interscience Publishers: New York, 1964; Vol. III. [Google Scholar]
  6. Vogel’s Textbook of Practical Organic Chemistry, 4th Ed. ed; ELBS/Longman: Essex, U.K., 1986; pp. 770–774.
  7. Salehi, P.; Khodaei, M. M.; Zolfigol, M. A.; Sirouszadeh, S. Catalytic Friedel-Craft acylation of alkoxybenzenes mediated by aluminum hydrogensulfate in solution and solvent-free conditions. Bull. Chem. Soc. Jpn. 2003, 76, 1863–1864. [Google Scholar] [CrossRef]
  8. Smith, K.; El-Hiti, G. A.; Jayne, A. J.; Butters, M. Acetylation of aromatic ethers using acetic anhydride over solid acid catalysts in a solvent free system: Scope of the reaction for substituted ethers. Org. Biomol. Chem. 2003, 1, 1560–1564. [Google Scholar] [CrossRef]
  9. Ross, J.; Xiao, J. Friedel-Carafts acylation reactions using metal triflates in ionic liquid. Green Chem. 2002, 4, 129–133. [Google Scholar] [CrossRef]
  10. Glasby, J. S. Encyclopedia of the alkaloids; Plenum Press: New York, 1975; Vol. 1, p. 661. [Google Scholar]
  11. Begum, S.; Hassan, S. I.; Siddiqui, B. S.; Ifzal, R.; Perwaiz, S.; Kiran, T.; Shaheen, F.; Ghayur, M. N.; Gilani, A. H. Preparation, structure and spasmolytic activities of some derivatives of harmine series of alkaloids. Nat. Prod. Res. 2006, 20, 213–227. [Google Scholar] [CrossRef]
  12. Kusurkar, R. S.; Goswami, S. K. Efficient one-pot synthesis of anti-HIV and anti-tumour beta-carbolines. Tetrahedron 2004, 60, 5315–5318. [Google Scholar] [CrossRef]
  13. Begum, S.; Hassan, S. I.; Siddiqui, B. S. A rapid, mild, efficient and solvent-free Friedel-Crafts acylation of N-acetyltetrahydroharmine. Synth. Commun. 2005, 35, 23–29. [Google Scholar]
  14. Siddiqui, S. A reinvestigation of the alkaloidal constituents of peganum harmala. Pak. J. Sci. Ind. Res. 1962, 5, 207–211. [Google Scholar]
  15. Li, J. J. A Collection of Detailed Reaction Mechanisms, 2nd Ed. ed; Springer-Verlag: Berlin-Heidelberg - New York, 2003; p. 149. [Google Scholar]
  16. Norman, R.; Coxon, J. M. Principles of organic synthesis, 3rd Ed. ed; Chapman & Hall: London, U.K, 1993; pp. 452–453. [Google Scholar]
  17. Ghiaci, M.; Asghari, J. Friedel-Crafts alkylation and acylation in the absence of solvent. Synth. Commun. 1998, 28, 2213–2220. [Google Scholar] [CrossRef]
  18. Coune, C. A.; Denoel, L. J. G. A. J. 13C NMR Des Alcaloides Des Strychnos: Les Derives De L’harmane Et De L’usambarensine. Phytochemistry 1980, 19, 2009–2011. [Google Scholar]
  19. Compounds no. 679, 1327, 1335, 1336, 1341 and 1920 in Breitmaier, E.; Haas, G.; Voclter, W. In Atlas of Carbon-13 NMR Data; Heyden & Sons Ltd.: London, 1979.
  • Sample Availability: Contact the authors.

Share and Cite

MDPI and ACS Style

Begum, S.; Ali, S.N.; Farhat, F.; Hassan, S.I.; Siddiqui, B.S. A Simple, Rapid and Mild One Pot Synthesis of Benzene Ring Acylated and Demethylated Analogues of Harmine under Solvent-free Conditions. Molecules 2008, 13, 1584-1598. https://0-doi-org.brum.beds.ac.uk/10.3390/molecules1301584

AMA Style

Begum S, Ali SN, Farhat F, Hassan SI, Siddiqui BS. A Simple, Rapid and Mild One Pot Synthesis of Benzene Ring Acylated and Demethylated Analogues of Harmine under Solvent-free Conditions. Molecules. 2008; 13(8):1584-1598. https://0-doi-org.brum.beds.ac.uk/10.3390/molecules1301584

Chicago/Turabian Style

Begum, Sabira, Syed Nawazish Ali, Farhat Farhat, Syed Imran Hassan, and Bina S. Siddiqui. 2008. "A Simple, Rapid and Mild One Pot Synthesis of Benzene Ring Acylated and Demethylated Analogues of Harmine under Solvent-free Conditions" Molecules 13, no. 8: 1584-1598. https://0-doi-org.brum.beds.ac.uk/10.3390/molecules1301584

Article Metrics

Back to TopTop