
90 The International Arab Journal of Information Technology, Vol. 17, No. 1, January 2020

A Novel Amended Dynamic Round Robin

Scheduling Algorithm for Timeshared Systems

Uferah Shafi1, Munam Shah1, Abdul Wahid1, Kamran Abbasi2, Qaisar Javaid3, Muhammad Asghar4,

and Muhammad Haider1
1Department of Computer Science, COMSATS University Islamabad, Pakistan

2Department of Distance Continuing and Computer Education, University of Sindh, Pakistan
3Department of Computer Science, International Islamic University, Pakistan

4Department of Computer Science, Bahuddin Zikriya University, Pakistan

Abstract: Central Processing Unit (CPU) is the most significant resource and its scheduling is one of the main functions of an

operating system. In timeshared systems, Round Robin (RR) is most widely used scheduling algorithm. The efficiency of RR

algorithm is influenced by the quantum time, if quantum is small, there will be overheads of more context switches and if

quantum time is large, then given algorithm will perform as First Come First Served (FCFS) in which there is more risk of

starvation. In this paper, a new CPU scheduling algorithm is proposed named as Amended Dynamic Round Robin (ADRR)

based on CPU burst time. The primary goal of ADRR is to improve the conventional RR scheduling algorithm using the active

quantum time notion. Quantum time is cyclically adjusted based on CPU burst time. We evaluate and compare the

performance of our proposed ADRR algorithm based on certain parameters such as, waiting time, turnaround time etc. and

compare the performance of our proposed algorithm. Our numerical analysis and simulation results in MATLAB reveals that

ADRR outperforms other well-known algorithms such as conventional Round Robin, Improved Round Robin (IRR), Optimum

Multilevel Dynamic Round Robin (OMDRR) and Priority Based Round Robin (PRR).

Keywords: CPU, scheduling algorithm, round robin scheduling FCFS, ADRR.

Received August 10, 2015; accepted February 15, 2017

https://doi.org/10.34028/iajit/17/1/11

1. Introduction

Central Processing Unit (CPU) scheduling is the most

important component which affects the efficiency of

the system in a computing environment. In a single

processor system, one process can execute at one time,

other processes are delayed until the CPU gets free.

CPU scheduling algorithms provide base for

multiprogramming. In multiprogramming [6], there are

several processes in the memory, CPU always have

one process to execute and it switches between

different processes to make itself busy all the time. It is

the duty of operating system to make decision that

which process should be executed. If CPU scheduling

is efficient then high computation can be done

correctly and accurately and system can retain stable.

The scheduling algorithm needs to be optimized to

make the system more productive and to increase the

system throughput.

There are several methods that an operating system

uses to select a process and then assign it to the CPU

for execution. Every algorithm has some advantages

and some limitations [8]. First Come and First Serve

(FCFS) Scheduling Algorithm [16] is an algorithm in

which new processes are popped in at the tail of the

queue and from head processes are assigned to the

CPU for execution. The process that arrives first are

assigned first to the CPU based on their arrival time. In

this algorithm, the average waiting is high. As if first

arriving process that is served first has a large CPU

burst time then the remaining processes will wait until

that process finishes its execution. Starvation is a

major problem in FCFS. Shortest Job First (SJF)

Scheduling Algorithm [1] is another scheduling

algorithm, in which the process with minimum CPU

burst time is assigned first to the CPU. The short-term

scheduler adds the processes at the head of the queue

with smallest CPU burst time and inserts the processes

at the tail of the queue with high CPU burst time. The

main problem in this scheduling is to find next CPU

burst time. The average waiting time in this algorithm

is smaller when compared to Round Robin (RR)

Scheduling algorithm. In the Priority Scheduling

Algorithm [15], each process is assigned a priority by

the operating system or the user. The process that has

highest priority will be assigned to CPU first. This is

preemptive scheduling as running process will be

preempted by the incoming process with highest

priority and will be assigned to CPU first. In Round

Robin Scheduling Algorithm [17], each process is

A Novel Amended Dynamic Round Robin Scheduling Algorithm for Timeshared Systems 91

assigned to CPU for a specific time interval (time

quantum or time slice). This results in no starvation

because every process gets same amount of time for

execution. Context switch is the big problem in this

algorithm. If quantum is small, more number of

context switches will occur which result in low

efficiency of CPU and if quantum is large, then the

algorithm behaves as FCFS. The conventional time

quantum based CPU scheduling algorithms do not

offer fair allocation of the CPU and result in starvation.

We propose a novel Amended Dynamic Round Robin

(ADRR) algorithm. In ADRR, the processes which

have lowest CPU burst time must wait for lesser time.

High throughput, small waiting time and small number

of context switches make the proposed algorithm

perform better when compared with similar

approaches. The rest of the paper is organized as

follow: Section 2 reviews the existing literature.

Section 3 describes the design of the proposed

algorithm. Section 4 provides the mathematical

analysis and simulation results of ADRR algorithm.

The paper is concluded in section 5.

2. Related Work

RR scheduling algorithm is widely implemented in

most of the operating systems for better CPU

performance. A lot of research has been carried out to

improve and optimize the performance of RR

scheduling by maximizing CPU utilization, throughput

and minimizing average waiting time, response time,

and turnaround time. The conventional RR scheduling

algorithm has following versions.

a) Improved Round Robin [23]: this is a hybrid

approach of conventional RR and SJF algorithms.

Using this technique all the processes are allocated

to CPU according to RR in first cycle and after the

first iteration, all the processes are entertained as

SJF. This methodology gives small average waiting

time and average turnaround time when compared

with conventional RR.

b) Optimum Multilevel Dynamic Round Robin [4]: in

this algorithm, all processes are arranged in

increasing order and are assigned to the CPU. An

intelligent Quantum Time (QT) is calculated. After

each cycle, value of QT is doubled which results in

decreased number of context switches. Before

preempting a process, a condition is checked based

on remaining CPU burst time to reduce waiting, this

is the reason, this algorithm gives improved results

as matched to conventional RR.

c) A Priority Based Round Robin [15]: in this

algorithm, all processes are treated according to the

priority of each process in first round. In second

round, priority of each process is set based on the

remaining CPU burst time of the process. All

processes are treated according to their new

priorities which results in lesser average waiting

time.

Many other flavors in RR CPU scheduling algorithm

have been presented. In year 2010, a new technique

was proposed as optimized RR scheduling algorithm

[18] for CPU Scheduling. This algorithm is consisted

of three rounds. In first round, all processes are treated

according to conventional RR algorithm. In second

round, QT is doubled and follow the SJF algorithm to

select processes. In last round, the first two rounds are

repeated until all the processes finish execution.

Self-Adjustment-Round-Robin (SARR), a new

technique was proposed by Matarneh [10]. On the

basis of which quantum time is adjusted dynamically.

In each iteration, quantum time is assigned the value

dynamically according to the burst time of currently

executing process. A new methodology named as

Adaptive Round Robin Scheduling using Shortest

Burst Approach Based on Smart Time Slice was

presented by Hiranwal [7]. In the proposed algorithm,

all processes are first arranged in ascending order, and

time slice is set as the value of CPU burst time of mid

process. If number of processes are even, the average

burst time value is set and vice versa. Another

technique is recently presented by Behera [2], in which

all the processes in ready queue are sorted in ascending

order. Firstly, median is found and then QT is set

according to median. Another new algorithm is

proposed in [12]. This algorithm adjusts QT by

calculating mean and average of the processes in the

ready queue.

A better version of RR scheduling algorithm is

presented by Varma [21]. The authors have used the

idea of shortest remaining time in RR manner and

possibly the best values of QT by calculating the

median and highest burst time. In [14], another

scheduling algorithm is developed which sets the value

of QT equal to the difference of highest CPU burst and

lowest CPU burst time. In [5], another CPU scheduling

algorithm is designed. Here, maximum and minimum

CPU burst time are calculated and QT is adjusted by

multiplying the sum of maximum and minimum CPU

burst time.

In year 2012, an improved version of RR was

proposed [3]. A new criterion is introduced to adjust

the value of QT. Firstly, average of CPU burst time of

all processes is calculated and QT is set as the sum of

the average and maximum CPU burst times. During

the same year, Varma et al. [22] presented another

flavor of RR in. The square root function is used to

calculate the value of QT. Mishra [11] proposed a new

algorithm in 2014 which sets the value of QT by using

the features of RR and SJF. Shyam and Nandal [19]

presented another algorithm in. They set QT by

calculating values of the mean and the highest burst

time. In [13], a different RR algorithm is developed on

the basis of group of processes using the values of

92 The International Arab Journal of Information Technology, Vol. 17, No. 1, January 2020

minimum and maximum CPU burst times. Most of the

existing solutions result in more waiting time taking

complex mechanism taking into consideration the

complex QT calculation. We propose a simple yet

efficient CPU scheduling algorithm with better results.

In year 2016, Khan et al. [9] presented a new group

based technique to schedule resources based on

different parameters of CPU to improve the system

efficiency and turnaround time.

3. Proposed Amended Dynamic Round

Robin (ADRR)

In this section, we discuss in detail the design of our

proposed ADRR algorithm. ADRR makes use of

dynamic QT as an alternate of fixed QT. In traditional

RR algorithm, a fixed QT is assigned to each process.

In ADRR, CPU burst time is measured dynamically

and QT is set equal to the value of the lowest CPU

burst time. After each cycle, QT is readjusted. In our

proposed ADRR, all the processes located in the ready

queue are first arranged in increasing order based on

the CPU burst time so that the process having lowest

CPU burst time will be at the head of the ready queue

and the process having highest CPU burst time will be

at the tail of the ready queue. Processes are assigned to

the CPU in such a way that the process which has

shortest CPU burst time, waits for minimum time

interval.

In ADRR, the QT, which is core factor in the

performance of RR, is set equal to the value of the least

CPU burst time. We set a threshold value of QT as 20

and then check a condition, i.e., if QT is less than the

threshold (20), then the condition is true and QT is set

as 20. We check this condition to avoid the Value of

QT being very small which will result in more number

of context switches. All processes are assigned to the

CPU for the specific time interval. Processes will be

preempted if their remaining CPU burst time is greater

than the half of the QT. Preempted processes are again

inserted into ready queue in ascending order. After the

first cycle, QT is readjusted and set as the value equal

to the lowest value of CPU burst time. Same rule is

repeated until all the processes finish their execution.

This means that in each cycle of ADRR, QT is

dynamically set as the value equal to the lowest CPU

burst time of the process. The block diagram of the

proposed ADRR algorithm is provided in Figure 1.

Figure 1. Block diagram of ADRR.

 We can see that all the states of the processes are

represented. A process changes its state during its life

cycle. Newly created processes are in new state, when

loaded into memory then these are in ready state, if

processes need I/O then processes go into waiting

state, when processes are assigned to CPU then these

processes are in running state and finally processes

finish execution are in exit or terminated state.

Processes are inserted into ready queue in ascending

order and assigned to CPU from head of the queue,

quantum time is adjusted as the minimum CPU burst

time in each cycle and minimum one process finishes

its execution. The process which have burst time

greater than quantum time are preempted and before

preemption if the remaining burst time is less than or

equal to quantum time then this process is not

preempted and completes its execution. The pseudo

code of the ADRR is provided in Algorithm1.

Algorithm 1: Amended Dynamic Round Robin

//Input: Number of processes

//Burst time of processes,

//loop variable i;

 // QT: Quantum Time

// RBT: Remaining burst time

// RQ: Ready Queue

// BT: Burst Time

// LBT: Least burst time

while(RQ! =null) {

sort processes (Ascending);

QT= LBT;

 if(QT<20){

 QT=20;}

 else{ QT=QT; }

for i=0 to Number of Processes {

 pi-> QT; if(BTi<QT)

 {Process} BT=0;// Exit else if(BTi>QT){

RBTi= BTi-QT;

 if(RBTi<=QT/2){ BTi=0; } //Process Exit

let pi to finish its execution don't preempt

insert pi into RQ

}

A Novel Amended Dynamic Round Robin Scheduling Algorithm for Timeshared Systems 93

34

27
28.6

27

17

0

5

10

15

20

25

30

35

40

RR PRR OMDRR IRR ADRR

T
im

e
(m

s)

RR

 PRR

 OMDRR

//Calculate TurnaroundTime(); waitingTime(); Average

Time();

insert pi into RQ

}

//Calculate TurnaroundTime(); waitingTime(); Average Time();

}New Processes are inserted into RQ

END

The flow chart of ADRR Scheduling algorithm is

shown below in Figure 2. It could be observed in

Figure 2 that the processes entering the system are

added into ready queue and are organized in increasing

order, quantum time is set as the minimum CPU burst

time. To minimize the number of context switches, the

minimum value of quantum time is set as 20. All

processes can execute for that time slice. Before

preempting the process, a condition is checked based

on remaining CPU burst time. In each round minimum

one process finishes its execution.

Figure 2. Flow chart of amended dynamic round robin.

4. Numerical Analysis and Simulation

Results

To compare the performance of proposed ADRR

scheduling algorithm, we perform mathematical

analysis and computer simulation for different

parameters such as number of context switches,

average waiting time and average turnaround time etc.

The simulation is performed to analyze the

performance of proposed ADRR in MATLAB 2013,

on Window 7 operating system. Numerical and

simulation results are discussed below. We compare

the performance of proposed ADRR with Round Robin

(RR), Priority based Round Robin (PRR), Optimum

Multilevel Dynamic Round Robin (OMDRR), and

Improved Round Robin (IRR).

We consider two examples, i.e., Example A and

Example B. as shown in Table 1. The average waiting

time, average turnaround time and number of context

switches are calculated for each algorithm. Five

processes have been considered with distinct CPU

burst time and arrival time. In example A, we take

burst time of each process randomly and assume

quantum time as 5ms. The processes arrive in the order

as: P1, P2, P4, P3 and P5. Here, the number of context

switches is 4 and the average waiting time is 17ms.

The average turnaround time is 29.8ms.

Table 1. Set of input.

Process_id
Arrival

time(ms)

Example A

CPU burst

time (ms)

Example B

CPU burst

time (ms)

Priority

P1 0.5 22 60 4

P2 1 18 20 2

P3 2 9 25 1

P4 3 10 10 3

P5 4 5 40 5

Figure 3. Comparison of average waiting time in each algorithm.

The numerical results obtained are plotted in Figure

3. It could be clearly observed from the graph that

ADRR gives the smallest waiting time. While, IRR and

PRR give equal average waiting times. We discuss

another important parameter in a scheduling algorithm,

i.e., context switch which helps in the critical

evaluation CPU scheduling algorithm. The CPU

remains idle during switching the process, comparison

of number of context switches is presented in Figure 4.

It could be clearly observed that in conventional RR,

there is maximum number of context switches and

ADRR gives minimum number of context switches.

94 The International Arab Journal of Information Technology, Vol. 17, No. 1, January 2020

Figure 4. Comparison of number of context switches in each

algorithm.

We proceed to the waiting time. A comparison of

proposed algorithm against other selected algorithms is

provided in Figure 5.

Figure 5. Simulation comparison of waiting time of each process.

Processes are plotted on x-axis and their waiting

times are plotted n y-axis. It is obvious from the graph

that in ADRR, P5 has smallest CPU burst time that’s

why waiting time of P5 is zero and P3 has minimum

burst time among all remaining processes so its waiting

time will be smaller than other processes. Hence

processes with small CPU burst times have to wait for

small interval. Since all processes are assigned to CPU

for quantum time, no chance of starvation. ADRR

gives better results as compared to other algorithms.

Turnaround time is also an important factor in

efficiency of an algorithm. Smaller value of turnaround

time makes the algorithm more efficient. The

comparative analysis of average turnaround time in

competing algorithms is shown in Figure 6 which

shows the result for average turnaround time for

different processes having different burst times. ADRR

gives least average turnaround time when compared

with other scheduling algorithms. Turnaround time of

each process in opposing algorithms is shown below in

Figure 7. Graphic statistics reveals that P5 has the least

turnaround time in ADRR due to its small waiting

time. ADRR gives small turnaround time as compared

to other algorithms.

Figure 6. Comparison of average turnaround time in each

algorithm.

Figure 7. Simulation comparison of turnaround time of each

process.

We discuss another example, i.e., Example B. We

take burst time of each process randomly and assume

QT as 10ms in this case. The order of the processes

becomes: P1, P5, P1, P5, P3, P2, and P4. If we

compute the values for this case, the total number of

context switches is 7, the average waiting time is 42ms

and the average turnaround time is 73ms. Figure 8

depicts the average waiting time in each algorithm,

conventional RR gives highest value of average

waiting time as compared to other competing round

robin flavors. Proposed algorithm gives the smallest

average waiting time. If average waiting time is small

that’s mean throughput of the processes will be high.

We discuss the waiting time of each process in each

algorithm for Example B. The numerical results

obtained in this case are plotted in Figure 8.

14

11

9
8

4

0

2

4

6

8

10

12

14

16

RR PRR OMDRR IRR ADRR

C
o
n

te
x
t

S
w

it
ch

es

RR
 PRR
 OMDRR
 IRR

0

10

20

30

40

50

P1 P2 P3 P4 P5

T
im

e
(m

s)

RR
IRR
PR
OMDRR
ADRR

46.8

39.8 4… 39.8

29.8

0

5

10

15

20

25

30

35

40

45

50

RR PRR OMDRR IRR ADRR

T
im

e
(m

s)

RR

 PRR

 OMDRR

 IRR

 ADRR

0

10

20

30

40

50

60

70

P1 P2 P3 P4 P5

T
im

e
(m

s)

RR
IRR
PR
OMDRR
ADRR

A Novel Amended Dynamic Round Robin Scheduling Algorithm for Timeshared Systems 95

Figure 8. Comparison of average waiting time in each algorithm.

The simulation is run to compare the waiting time

for each process for Example B. It could be observed

in Figure 9 that P4 has least CPU burst time. Waiting

time increases with the increase in the burst time.

Results prove that waiting time of each process is

lower in ADRR when compared with the waiting times

of the processes in other algorithms.

Figure 9. Simulation comparison of waiting time of each process.

In example B, context switch comparison is shown

in Figure 10. It could be observed that the efficient

design of ADRR results in lesser context switches. In

ADRR, there is small number of context switches as

compared to selected algorithms in the analysis.

The simulation comparison of turnaround time of

each process is shown in Figure 11. We can see that P4

has least turnaround time in all algorithms in example

B. Statistical status of Figure-12 shows that ADRR

gives better result. Graph shows that among all

selected algorithms, ADRR gives least turnaround time

for all processes.

Figure 10. Comparison of number of context switches in each

algorithm.

Figure 11. Simulation comparison of turnaround time.

The comparison between the average turnaround

times of all algorithms being compared in example B is

shown in Figure 13 Average waiting time in ADRR

gives smallest value.

Figure 12. Comparison of average waiting time in each algorithm.

a) Performance Comparison between RR, IRR,

OMDRR, PRR, and ADRR: Average waiting time

and average turnaround time calculated from each

algorithm for example A and B is provided in Table

2.

70

62 60

51

42

0

10

20

30

40

50

60

70

80

RR PRR OMDRR IRR ADRR

T
im

e
(m

s)

RR
 PRR
 OMDRR
 IRR
 ADRR

0

10

20

30

40

50

60

70

80

90

100

P1 P2 P3 P4 P5

T
im

e
(m

s)

RR

IRR

14
13

10

8

6

0

3

6

9

12

15

RR PRR OMDRR IRR ADRR

C
o
n

te
x
t

S
w

it
ch

es

RR

 PRR

 OMDRR

 IRR

 ADRR

0

50

100

150

200

P1 P2 P3 P4 P5

T
im

e
(m

s)

RR
IRR
PR
OMDRR
ADRR

101
93 91

82
73

0

20

40

60

80

100

120

RR PRR OMDRR IRR ADRR

T
im

e
(m

s)

RR

 PRR

 OMDRR

 IRR

 ADRR

96 The International Arab Journal of Information Technology, Vol. 17, No. 1, January 2020

Table 2. Performance comparison of different algorithms.

Algorithm

Example A

Average

Waiting

Time (ms)

Example B

Average

Waiting

Time (ms)

Example A

Average

Turnaround

Time (ms)

Example B

Average

Turnarond

Time (ms)

Example

A No. of

Context

Switches

Example

B No. of

Context

Switches

RR [20] 34 73 46.8 101 13 14

IRR [23] 26 50 39.8 82 8 8

OMDRR

[4]
28.6 60 41.5 91 9 10

PRR[15] 26.8 50 39.8 93 8 8

ADRR 17 42 29.8 73 4 7

b) More Numerical Examples: We consider three more

examples, i.e., Example C, D and E. The set of input

for these examples is provided in Table 3. Note that

QT has been set to 5ms.

Table 3. Set of input for examples C, D, and E.

Process ID
Arrival

time (ms)

Example C Example D Example E

Burst

Time ms
Priority

Burst

Time

ms

Priority

Burst

Time

ms

Priority

P1 0.5 22 5 20 3 7 4

P2 1 34 2 12 5 22 5

P3 2 27 3 32 1 34 2

P4 3 50 1 10 4 5 1

P5 4 17 4 41 2 35 3

We calculate the average waiting time for five sets

of input for each algorithm. The values obtained in this

case are provides in Table 4.

Table 4. Performance comparison of different algorithms for
waiting time (WT) for examples A-E.

Algorithm
Ex. A

WT(ms)

Ex. B

WT(ms)

Ex. C

WT

(ms)

Ex. D

WT

(ms)

Ex. E

WT

(ms)

Avg

WT(ms)

RR [20] 34 70 89..4 55.59 43.79 58.55

IRR [23] 27 51 54.4 39.6 32.8 40.96

OMDRR [4] 28.6 60 56.8 45.6 35.2 45.24

PRR [15] 27 62 84.4 52.6 40.8 53.36

ADRR 17 42 48.4 33.6 27.8 33.76

c) Summary and Findings: The numerical results

provided in Table 4 are plotted in Figure 13. It could

be clearly observed that the proposed ADRR gives

far more batter results for five different sets of

inputs when compared with other well-known CPU

scheduling algorithms. We proved with the help of

many experiments that the proposed method gives

less average waiting, turnaround time and small

number of context switches as paralleled to

conventional round robin [6], Optimum Multilevel

Dynamic round robin [4], improved round robin

[23] and priority based round robin [15].

Figure 13. Average waiting Time for 5 examples.

5. Conclusions

In this paper, a novel CPU scheduling algorithm

named as ADRR Scheduling algorithm is proposed.

Some of the salient features of ADRR are dynamicity

of QT and multiple number of rounds which yield

optimized values of waiting time and number of

context switches. We performed both numerical

analysis and simulation experiments for the proposed

ADRR algorithm. Different examples for different

CPU burst times were run and then compared with

other well-known scheduling algorithms. The results

prove that the proposed ADRR algorithm has

outperformed other algorithms in terms of less average

waiting time, small number of context switches and

less turnaround time. Potential of time sharing systems

can be upgraded with the suggested procedure and can

be amended in future to improve the working of real

time system.

References

[1] Aggarwal H., “Comparative Performance Study

of CPU Scheduling Algorithms,” International

Journal of Advanced Research in Computer

Science and Software Engineering, vol. 4, no. 6,

pp. 714-717, 2014.

[2] Behera H., Mohanty R., and Nayak D., “A New

Proposed Dynamic Quantum with Re-Adjusted

Round Robin Scheduling Algorithm and its

Performance Analysis,” International Journal of

Computer Science and Communication, vol. 5,

no. 5, pp. 10-15, 2010.

[3] Banerjee P., Banerjee P., and Dhal S.,

“Comparative Performance Analysis of Average

Max Round Robin Scheduling Algorithm using

Dynamic Time Quantum with Round Robin

Scheduling Algorithm using Static Time

Quantum,” International Journal of Innovative

Technology and Exploring Engineering, vol. 1,

no. 3, pp. 56-62, 2012.

[4] Chavan S., and P., and Tikekar., “An Improved

Optimum Multilevel Dynamic Round Robin

Scheduling Algorithm,” International Journal of

58.58
53.36

45.24

40.96

33.76

0

10

20

30

40

50

60

RR PRR OMDRR IRR ADRR

T
im

e
(m

s)

RR

 PRR

 OMDRR

 IRR

 ADRR

A Novel Amended Dynamic Round Robin Scheduling Algorithm for Timeshared Systems 97

Scientific and Engineering Research, vol. 4, no.

12, pp. 298-301, 2013.

[5] Dawood A., “Improving Efficiency of Round

Robin Scheduling Using Ascending Quantum

And Minumim-Maxumum Burst Time,” Journal

of University of Anbar for Pure Science, vol. 6,

no. 2, 2012.

[6] Goel N. and Garg R., “A Comparative Study of

CPU Scheduling Algorithms,” International

Journal of Graphics and Image Processing, vol.

2, no. 4, pp. 245-251, 2012.

[7] Hiranwal S. and Roy K.,“Adaptive Round Robin

Scheduling using Shortest Burst Approach Based

on Smart Time Slice,” International Journal of

Computer Science and Communication, vol. 2,

no. 2, pp. 319-323, 2011.

[8] Kumar A., Rohal H., and Arya S., “Analysis of

CPU Scheduling Policies through Simulation,”

International Journal of Advanced Research in

Computer Science and Software Engineering,

vol. 3, no. 5, pp. 1158-1162, 2013.

[9] Khan M., Hyder S., Ahmad G., and Begum S.,

“A Group Based Fault Tolerant Scheduling

Mechanism to Improve the Application

Turnaround Time on Desktop Grids,” The

International Arab Journal of Information

Technology, vol. 13, no. 2, pp. 274-280, 2016.

[10] Matarneh R., “Self-Adjustment Time Quantum in

Round Robin Algorithm Depending on Burst

Time of the Now Running Processes,” American

Journal of Applied Sciences, vol. 6, no. 10, pp.

1831-1837, 2009.

[11] Mishra M. and Rashid F., “An Improved Round

Robin Cpu Scheduling Algorithm with Varying

Time Quantum,” International Journal of

Computer Science, Engineering and

Applications, vol. 4, no. 4, pp. 1-8, 2014.

[12] Noon A., Kalakech A., and Kadry S., “A New

Round Robin Based Scheduling Algorithm for

Operating Systems : Dynamic Quantum Using

the Mean Average,” International Journal of

Computer Science, vol. 8, no. 3, pp. 224-229,

2011.

[13] Panda S., Dash D., and Rout J., “A Group based

Time Quantum Round Robin Algorithm using

Min-Max Spread Measure,” International

Journal of Computer Applications, vol. 64, no.

10, pp. 1-7, 2013.

[14] Panda S. and Bhoi S., “An Effective Round

Robin Algorithm using Min-Max Dispersion

Measure,” International Journal on Computer

Science and Engineering, vol. 4, no. 1, pp. 45-53,

2012.

[15] Rajput I. and Gupta D., “A Priority Based Round

Robin CPU Scheduling Algorithm for Real Time

Systems,” International Journal of Innovations in

Engineering and Technology, vol. 1, no. 3, pp. 1-

11, 2012.

[16] Singh P., Singh V., and Pandey A., “Analysis and

Comparison of CPU Scheduling Algorithms,”
International Journal of Emerging Technology

and Advanced Engineering, vol. 4, no. 1, pp. 91-

95, 2014.

[17] Singh V. and Gabba T., “Comparative Study of

Processes Scheduling,” International Journal of

Computing and Business Research, vol. 4, no. 2,

2013.

[18] Singh A., Goyal P., and Batra S., “An Optimized

Round Robin Scheduling Algorithm for CPU

Scheduling,” International Journal on Computer

Science and Engineering, vol. 2, no. 7, pp. 2383-

2385, 2010.

[19] Shyam R. and Nandal S., “Improved Mean

Round Robin with Shortest Job First

Scheduling,” International Journal of Advanced

Research in Computer Science and Software

Engineering, vol. 4, no. 7, pp. 170-179, 2014.

[20] Somani J. and Chhatwani P., “Comparative

Study of Different CPU Scheduling Algorithms,”

International Journal of Computer Science and

Mobile Computing, vol. 2, no. 11, pp. 310-318,

2013

[21] Varma P., “A Best Possible Time Quantum for

Improving Shortest Remaining Burst Round

Robin Algorithm,” International Journal of

Advanced Research in Computer Science and

Software Engineering, vol. 2, no. 11, pp. 228-

237, 2012.

[22] Varma P., “Improved Shortest Remaining Burst

Round Robin Using RMS as its Time Quantum,”

International Journal of Advanced Research in

Computer Engineering and Technology, vol. 1,

no. 8, pp. 60-64, 2012.

[23] Yadav R., Mishra A., Prakash N., and Sharma H.,

“An Improved Round Robin Scheduling

Algorithm for CPU Scheduling,” International

Journal on Computer Science and Engineering,

vol. 2, no. 4, pp. 1064-1066, 2010.

98 The International Arab Journal of Information Technology, Vol. 17, No. 1, January 2020

Uferah Shafi holds a BSc degree in

Mathematics from Bahauddin

Zikariya University, Multan,

Pakistan and MSc degree in

Information Technology from

Quaid-i-Azam University,

Islamabad, Pakistan and MS in

Computer Science from COMSATS Institute of

Information Technology, Islamabad, Pakistan. Her

research interests include in pattern recognition and in

field of AI. Currently she is doing research and

development in Unicorn Black.

Munam Shah received B.Sc and

M.Sc degrees, both in Computer

Science from University of

Peshawar, Pakistan, in 2001 and

2003 respectively. He completed his

MS degree in Security Technologies

and Applications from University of

Surrey, UK, in 2010, and has passed his PhD from

University of Bedfordshire, UK in 2013. Since July

2004, he has been a Lecturer, Department of Computer

Science, COMSATS University Islamabad, Pakistan.

His research interests include MAC protocol design,

QoS and security issues in wireless communication

systems. Dr. Shah received the Best Paper Award of

the International Conference on Automation and

Computing in 2012. Dr. Shah is the author of more

than 120 research articles.

Abdul Wahid is Assistant Professor

in the Department of Computer

Science, CIIT. He has completed

Ph.D from Kyungpook National

University, Rep of Korea. His

research interests include but are not

limited to Vehicular Ad-hoc

Network, Wireless Sensor Network, Underwater

Wireless Sensor Network, Cyber Physical Systems,

Software defined Networking, Information-centric

Networking.

 Kamran Abbasi holds a PhD

degree in Computer Science from

UK and currently serving as

Associate Professor at University of

Sindh Pakistan, his key research

areas are Operating Systems,

Computer Networks, Information

Systems and Educational Technology.

Qaisar Javaid is working as an

Assistant Professor in the

Department of Computer Science &

Software Engineering at IIUI. He is

consistently doing research in the

areas of Computer Networks,

Information Security, Cloud

Computing and IoT. He is also heading the CISCO

Networking Academy of International Islamic

University, Islamabad, Pakistan.

Muhammad Asghar is serving as

an Assistant Professor at Bahauddin

Zakariya University Multan. His

research interests include video

content retrieval and video

processing.

Muhammad Haider graduated

from Quaid-i-Azam University

Islamabad, Pakistan. Currently, he is

working as a software developer. His

research interests are in reverse

engineering and AI.

