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1 Introduction
Let C be the set of complex numbers and ∆ = {ς :
ς ∈ C and |ς| < 1} be the unit disk. Let R and N :=
{1, 2, 3, ...} = N0\{0} be the sets of real numbers
and natural numbers, respectively. Let A denote the
family of functions of the form

f(ς) = ς +

∞∑
n=2

anς
n (1)

which are holomorphic in ∆. Further, we denote the
subfamily of A which are univalent in ∆ by S. Ac-
cording to the well-known theorem of Koebe, every
function f ∈ S contains a disk of radius 1

4 . Thus, ev-
ery f ∈ S has an inverse f−1 satisfying

f−1(f(ς)) = ς (ς ∈ ∆) and f(f−1(w)) = w

where
|w| < r0(f), r0(f) ≧

1

4
and is in fact given by

f−1(w) = w − a2w
2 + (2a22 − a3)w

3−
(5a32−5a2a3+a4)w

4+ · · · := g(w). (2)
If a function f and its inverse f−1 are both univa-

lent in∆, then a member f ofA is called bi-univalent

(or bi-schlicht) in ∆ . The family of bi-univalent (or
bi-schlicht) functions in∆ given by (1) is indicated by

σ. The functions−log(1−ς), 1
2
log

(
1 + ς

1− ς

)
, ς

1− ς
and so on are members of the class σ. Howewer, the

familiar Koebe function as well as ς − ς2

2
,

ς

1− ς2
(members of S) are not members the class σ.

Lewin [18] examined the family σ and proved that
|a2| < 1.51 for elements in the family σ. Later,
Brannan and Clunie[6] claimed that |a2| ≤

√
2 for

f ∈ σ. Subsequently, Tan [30] found the initial
coefficient bounds of bi-univalent functions. Bran-
nan and Taha [5] proposed bi-convex and bi-starlike
functions which are similar to well-known subfam-
ilies of S . The momentum on investigation of the
family σ was gained in recent years, which is due
to the paper of Srivastava et al.][23] and that has
led to a large number of papers in recent times.
Some interesting results concerning initial bounds for
certain special sets of σ have been examined in (
[2],[7],[10],[11],[16],[17],[21] and [24]) on subfam-
ilies of σ. They have obtained estimates on |a2| ,
|a3| and |a3 − δa22|, δ ∈ R, a2 and a3 being the
first two coefficients of Taylor-Maclaurin’s expan-
sion. However, the problem of finding the bounds on
|an| (n = 3, 4, · · · ) for members of σ is still open.
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Let Γ be the Gamma function. The first kind
Bessel function of order ν is defined by (see [20])

Jν(z) :=

∞∑
n=0

(−1)n(ς/2)2n+ν

n!Γ(n+ ν + 1)
, (ς ∈ C, ν ∈ R). (3)

Recently, Szasz and Kupan [25] found the univa-
lence of the first kind Bessel function κν : ∆ → C
defined by

κν(z) := 2νΓ(ν + 1)ς1−ν/2Jν(ς
1/2)

= z +

∞∑
n=2

(−1)n−1Γ(ν + 1)

4n−1(n− 1)!Γ(n+ ν)
ςn,(4)

where ς ∈ ∆, ν ∈ R.
For κν , the q−derivative operator (0 < q < 1) is
defined by

∂qκν(ς) :=
κν(qς)− κν(ς)

ς(q − 1)

= ∂q

[
ς +

∞∑
n=2

(−1)n−1Γ(ν + 1)

4n−1(n− 1)!Γ(n+ ν)
ςn

]

= 1 +

∞∑
n=2

(−1)n−1Γ(ν + 1)

4n−1(n− 1)!Γ(n+ ν)
[n, q]ςn−1,(5)

where ς ∈ ∆,

[n, q] :=
1− qn

1− q
= 1+

n−1∑
j=1

qj , [0, q] := 0. (6)

Using (6), we will define the following:

1. For any n ∈ N0,

[n, q]! :=

{
1, if n = 0
[1, q][2, q] …[n, q] if n ∈ N.

(7)
is the q - shifted factorial.

2. For any n ∈ N0,

[r, q]n :=

{
1, if n = 0
[r, q][r+1, q] …[r+n-1, q] if n ∈ N.

(8)
is the q - generalized Pochhammer symbol.

For 0 < q < 1, ν > 0 and λ > −1 , El-Deeb and
Bulboacǎ [9] defined the function J λ

ν, q : ∆ → C by

J λ
ν, q(ς) := ς+ (9)

∞∑
n=2

(−1)n−1Γ(ν + 1)

4n−1(n− 1)!Γ(n+ ν)

[n, q]!

[λ+ 1, q]n−1
ςn, ς ∈ ∆.

A computation shows that

J λ
ν, q(ς) ∗Mq, λ+1(ς) = z∂qκν(ς), ς ∈ ∆, (10)

whereMq, λ+1(ς) is given by

Mq, λ+1(ς) := ς +

∞∑
n=2

[λ+ 1, q]n−1

[n− 1, q]!
ςn, ς ∈ ∆.

(11)
Using the idea of convolutions and the definition of q -
derivative, El-Deeb and Bulboacǎ [9] examined the
operator N λ

ν, q : A → A defined by

N λ
ν, qf(ς) := J λ

ν, q(ς) ∗ f(z)

= ς +

∞∑
n=2

ψnanς
n, (12)

where 0 < q < 1, ν > 0, λ > −1, ς ∈ ∆ and

ψn :=
(−1)n−1Γ(ν + 1)

4n−1(n− 1)!Γ(n+ ν)

[n, q]!

[λ+ 1, q]n−1
(13)

Remark 1.1. One can verify from (12) that the follow-
ing identity hold for all f ∈ A :

[λ+ 1, q]N λ
ν, qf(ς) = [λ, q]N λ+1

ν, q f(ς)+ (14)

qλς∂q

(
[λ+ 1, q]N λ+1

ν, q f(ς)
)
, ς ∈ ∆

and

lim
q→1−

N λ
ν, qf(ς) = J λ

ν, 1f(ς) =: J λ
ν f(ς) = ς (15)

+

∞∑
n=2

(−1)n−1Γ(ν + 1)

4n−1(n− 1)!Γ(n+ ν)

n!

(λ+ 1)n−1
ann, z ∈ ∆.

The (p, q)-Lucas polynomials Ln(p(κ), q(κ),κ),
(or Ln(κ)) are given by the recurrence relation (see
[13, 14]):

Ln(κ) = p(κ)Ln−1(κ)+q(κ)Ln−2(κ)(n ∈ N\{1}),
(16)

with

L0(κ) = 2 and L1(κ) = p(κ),

where p(κ) and q(κ) be polynomials with real coeffi-
cients. One can find from (16) that L2(κ) = p2(κ)+
2q(κ), L3(κ) = p3(κ) + 3p(κ)q(κ). Note that for
particular choices of p(κ) and q(κ), the (p, q) - Lucas
polynomials Ln(p(κ), q(κ),κ), leads to the follow-
ing polynomials:

1. Ln(2κ, 1,κ) = Pn(κ) the Pell-Lucas polyno-
mials.
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2. Ln(κ, 1,κ) = Ln(κ) the Lucas polynomials.

3. Ln(2κ,−1,κ) = Tn(κ) the first kind Cheby-
shev polynomials.

4. Ln(3κ,−2,κ) = Fn(κ) the Fermat-Lucas
polynomials.

5. Ln(1, 2κ,κ) = Qn(κ) the Jacobsthal-Lucas
polynomials.

It is known from [19] that

GLn(κ)(ς) :=

∞∑
n=0

Ln(κ)zn =
2− p(κ)ς

1− p(κ)ς − q(κ)ς2
.

(17)
is the generating function of the (p, q)-Lucas polyno-
mials Ln(κ).

It is well-known that these polynomials have po-
tential applications in branches such as approximation
theory, architecture, engineering sciences , statistics,
mathematical and physical sciences. For more details
about the above mentioned polynomials one can refer
[13], [14],[15] and [19]. The recent research trends
on functions ∈ σ linked with (p, q) - Lucas polyno-
mial can be seen in [1], [3], [4], [27], [28] and [29].

Motivated essentially by the fruitful usages of
above mentioned polynomials and Bassel functions
in Geometric function theory and the recent papers
[8], [12] and [26], we present two subfamilies of
bi-univalent functions defined by making use of q -
analogue of Bessel functions subordinate to (p, q) -
Lucas polynomials. Throughout this paper, the func-
tion f−1(w) = g(w) is as in (2) and the generating
function G is as in (17).

The subordination principle for holomorphic func-
tions f and g in ∆, is due to Miller and Mocanu (see
[22]). f is said to be subordinate to g, if there exists
a Schwarz function ω such that f(ς) = g(ω(ς)) (ς ∈
∆), ω(0) = 0 and |ω(ς)| < 1. This subordination
will be indicated by f ≺ g (ς ∈ ∆) (or f(ς) ≺
g(ς)) (ς ∈ ∆). Further, if g is univalent in ∆, f ≺
g (ς ∈ ∆) ⇔ f(0) = g(0) and f(∆) ⊂ g(∆).

Definition 1.1. For τ ≥ 1, µ ≥ 0, 0 ≤ γ ≤ 1, 0 <
q < 1, ν > 0, λ > −1 a function f ∈ σ of the form
(1) is said to be in the class S∗

σ(τ, γ, µ, λ, ν, q, κ),
if

ς
((

N λ
ν, qf(ς)

)′)τ
+ µς2

(
N λ

ν, qf(ς)
)′′

(1− γ)ς + γN λ
ν, qf(ς)

≺

GLn(κ)(ς)− 1

and

w
((

N λ
ν, qg(w)

)′)τ
+ µw2

(
N λ

ν, qg(w)
)′′

(1− γ)w + γN λ
ν, qg(w)

≺

GLn(κ)(w)− 1,

where ς, w ∈ ∆.
Remark 1.2. Putting q → 1−, we obtain

lim
q→1−

S∗
σ(τ, γ, µ, λ, ν, q,κ) =: S∗

σ(τ, γ, µ, λ, ν,κ),

the class of f ∈ σ satisfying the following two con-
ditions

ς
((

J λ
ν f(ς)

)′)τ
+ µς2

(
J λ
ν f(ς)

)′′
(1− γ)ς + γJ λ

ν f(ς)
≺ GLn(κ)(ς)−1,

and

w
((

J λ
ν g(w)

)′)τ
+ µw2

(
J λ
ν g(w)

)′′
(1− γ)w + γJ λ

ν,g(w)
≺

GLn(κ)(w)− 1,

where

τ ≥ 1, µ ≥ 0, 0 ≤ γ ≤ 1, ν > 0, λ > −1, ς, w ∈ ∆.

The family S∗
σ(τ, γ, µ, λ, ν, q, κ), is of special

interest for it contains many new subfamilies of σ for
particular choices of γ and µ, as illustrated below:

1. S∗
σ(τ, 0, µ, λ, ν, q,κ) ≡ J∗∑(τ, µ, λ, ν, q,κ) is

the collection of functions f ∈ σ satisfying((
N λ

ν, qf(ς)
)′)τ

+µς
(
N λ

ν, qf(ς)
)′′

≺ GLn(κ)(ς)−1

and((
N λ

ν, qg(w)
)′)τ

+µw
(
N λ

ν, qg(w)
)′′

≺ GLn(κ)(w)−1,

where ς, w ∈ ∆.
2. S∗

σ(τ, 1, µ, λ, ν, q,κ) ≡ K∗∑(τ, µ, λ, ν, q,κ) is
the set of functions f ∈ σ satisfying

ς
((

N λ
ν, qf(ς)

)′)τ
N λ

ν, qf(ς)
+ µ

(
ς2(N λ

ν, qf(ς))
′′

N λ
ν, qf(ς)

)
≺

GLn(κ)(ς)− 1

and

w
((

N λ
ν, qg(w)

)′)τ
N λ

ν, qf(w)
+ µ

(
w2(N λ

ν, qg(w))
′′

N λ
ν, qg(w)

)
≺

GLn(κ)(w)− 1,

where ς, w ∈ ∆.
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3. S∗
σ(τ, γ, 1, λ, ν, q,κ) ≡ L∗∑(τ, γ, λ, ν, q,κ) is

the collection of functions ∈ σ satisfying

ς
((

N λ
ν, qf(ς)

)′)τ
+ ς2

(
N λ

ν, qf(ς)
)′′

(1− γ)ς + γN λ
ν, qf(ς)

≺ GLn(κ)(ς)−1

and

w
((

N λ
ν, qg(w)

)′)τ
+ w2

(
N λ

ν, qg(w)
)′′

(1− γ)w + γN λ
ν, qg(w)

≺

GLn(κ)(w)− 1,

where ς, w ∈ ∆.
Definition 1.2. For ξ ≥ 1, τ ≥ 1, 0 < q < 1, ν >
0, and λ > −1 a function f ∈ σ of the form (1) is
said to be in the classM∗

σ(ξ, τ, λ, ν, q, κ), if

ξ
[(
ς(N λ

ν, qf(ς))
′)′]τ + (1− ξ)(

N λ
ν, qf(ς)

)′ ≺ GLn(κ)(ς)− 1

and

ξ
[(
w(N λ

ν, qg(w))
′)′]τ + (1− ξ)(

N λ
ν, qg(w)

)′ ≺ GLn(κ)(w)− 1,

where ς, w ∈ ∆.
Remark 1.3. Putting q → 1−, we obtain

lim
q→1−

M∗
σ(ξ, τ, λ, ν, q, κ) =: M∗

σ(ξ, τ, λ, ν, κ),

the class of f ∈ σ satisfying the following two con-
ditions

ξ
[(
ς(J λ

ν f(z))
′)′]τ + (1− ξ)

(J λ
ν f(ς))

′ ≺ GLn(κ)(ς)− 1

and

ξ
[(
w(J λ

ν g(w))
′)′]τ + (1− ξ)

(J λ
ν g(w))

′ ≺ GLn(κ)(w)− 1,

where ς, w ∈ ∆.
We note that M∗

σ(1, τ, λ, ν, q,κ) ≡
U∗
σ(τ, λ, ν, q,κ) is the family investigated in [26].

Mσ(1, τ, λ, ν, q, κ) ≡ T ∗
σ (τ, λ, ν, q, κ) is the

collection of functions f ∈ σ satisfying[(
ς(N λ

ν, qf(ς))
′)′]τ(

N λ
ν, qf(ς)

)′ ≺ GLn(κ)(ς)− 1, ς ∈ ∆

and[(
w(N λ

ν, qg(w))
′)′]τ(

N λ
ν, qg(w)

)′ ≺ GLn(κ)(w)− 1, w ∈ ∆.

2 The set of main results
In this section, we propose to find bounds on |a2|, |a3|
and |a3 − δa22| (δ ∈ R) for functions in the classes
S∗
σ(τ, γ, µ, λ, ν, q, x) and M∗

σ(ξ, τ, λ, ν, q, x), intro-
duced in Definition1.1 and Definition 1.2 , respec-
tively.

Theorem 2.1. Let τ ≥ 1, µ ≥ 0, 0 ≤ γ ≤ 1, 0 <

q < 1, ν > 0, λ > −1 and f(ς) = ς +
∞∑
n=2

anς
n be

in the class S∗
σ(τ, γ, µ, λ, ν, q, κ). Then

|a2| ≤
|p(κ)|

√
|p(κ)|√

|tp2(κ)− 2s q(κ)|
,

|a3| ≤
|p(κ)|

(3(η + µ)− γ)ψ3
+
p2(κ)
s

and for δ ∈ R

∣∣a3 − δa22
∣∣ ≤


|p(κ)|

(3(η + µ)− γ)ψ3
, if |δ − 1| ≤ J

|p(κ)|3 |δ − 1|
|t p2(κ)− 2s q(κ)|

, if |δ − 1| ≥ J

.

where
η = τ + µ, (18)

t = [(3(η+µ)−γ)ψ3−2(τ(τ+1)+(2µ−γ)η+2µτ)ψ2
2],

(19)
s = (2η − γ)2ψ2

2 (20)
and

J =

∣∣tp2(κ)− 2sq(κ)
∣∣

(3(η + µ)− γ)ψ3p2(κ)
. (21)

Proof. Let f ∈ S∗
σ(τ, γ, µ, λ, ν, q, κ), be given

by (1). Then, for holomorphic functions u and v with

u(0) = 0, v(0) = 0, |u(ς)| =
∣∣u1ς + u2ς

2 + . . .
∣∣ < 1,

and

|v(w)| =
∣∣v1w + v2w

2 + . . .
∣∣ < 1, ς, w ∈ ∆.

Therefore, on account of Definition 1.1, we can write

ς
((

N λ
ν, qf(ς)

)′)τ
+ µς2

(
N λ

ν, qf(ς)
)′′

(1− γ)ς + γN λ
ν, qf(ς)

=

GLn(κ)(u(ς))− 1

and

w
((

N λ
ν, qg(w)

)′)τ
+ µw2

(
N λ

ν, qg(w)
)′′

(1− γ)w + γN λ
ν, qg(w)

=

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2022.21.15 Sondekola Rudra Swamy, Alina Alb Lupas

E-ISSN: 2224-2880 101 Volume 21, 2022



GLn(κ)(v(w))− 1.

Or, equivalently,

ς
((

N λ
ν, qf(ς)

)′)τ
+ µς2

(
N λ

ν, qf(ς)
)′′

(1− γ)ς + γN λ
ν, qf(ς)

=

−1+L0(κ)+L1(κ)u(ς)+L2(κ)[u(ς)]2+. . .

and

w
((

N λ
ν, qg(w)

)′)τ
+ µw2

(
N λ

ν, qg(w)
)′′

(1− γ)w + γN λ
ν, qg(w)

=

−1 + L0(κ) + L1(κ)v(w) + L2(κ)[v(w)]2 + . . . .

We obtain, from the above equalities

ς
((

N λ
ν, qf(ς)

)′)τ
+ µς2

(
N λ

ν, qf(ς)
)′′

(1− γ)ς + γN λ
ν, qf(ς)

=

1+L1(κ)u1ς+[L1(κ)u2+L2(κ)u21]ς2+ . . . (22)
and

w
((

J λ
ν, qg(w)

)′)τ
+ µw2

(
J λ
ν, qg(w)

)′′
(1− γ)w + γJ λ

ν, qg(w)
=

1+L1(κ)v1w+[L1(κ)v2+L2(κ)v21]w2+. . . . (23)
It is known that

|uk| ≤ 1, |vk| ≤ 1 (k ∈ N). (24)

Comparing (22) and (23), we have

(2η − γ)ψ2a2 = L1(κ)u1 (25)

(3(η + µ)− γ)ψ3a3+
(
γ2 + 2τ(τ − 1)− 2γη

)
ψ2
2a

2
2 =

L1(κ)u2 + L2(κ)u21 (26)

−(2η − γ)ψ2 a2 = L1(κ)v1 (27)
and

(3(η + µ)− γ)ψ3

(
2a22 − a3

)
+(

γ2 + 2τ(τ − 1)− 2γη
)
ψ2
2a

2
2 = L1(κ)v2+L2(κ)v21,

(28)
where η is as in (18).
From (25) and (27), we get

u1 = −v1 (29)

and
2 s a22 = [L1(κ)]2(u21 + v21) (30)

where s is given by (20).
If we add (26) to (28), we obtain

2 b a22 = L1(κ)(u2 + v2) + L2(κ)(u21 + v21), (31)

where

b = [(3(η+µ)−γ)ψ3+
(
γ2 + 2τ(τ − 1)− 2γη

)
ψ2
2].

(32)
From (30) and (31), we deduce that

2a22 =
[L1(κ)]3 (u2 + v2)

bL2
1(κ)− s L2(κ)

. (33)

Putting the values ofL1(κ), L2(κ) and applying (24)
for |u2| and |v2|, we get

|a2| ≤
|p(κ)|

√
|p(κ)|√

|t p2(κ)− 2 s q(κ)|
.

where t is as mentioned in (19).
To find the estimate on |a3|, first we subtract (28)

from (26) and then in view of (29), we obtain

2(3(η + µ)− γ)ψ3 a3 − 2(3(η + µ)− γ)ψ3 a
2
2 =

L1(κ) (u2 − v2) + L2(κ)
(
u21 − v21

)
a3 =

L1(κ) (u2 − v2)

2(3(η + µ)− γ)ψ3
+ a22. (34)

Then in view of (30), (34) becomes

a3 =
L1(κ) (u2 − v2)

2(3(η + µ)− γ)ψ3
+

[L1(κ)]2(u21 + v21)

2 s
.

Applying (24), we deduce that

|a3| ≤
|p(κ)|

(3(η + µ)− γ)ψ3
+
p2(κ)
s

.

From (34), for δ ∈ R, we write

a3 − δa22 =
L1(κ) (u2 − v2)

2(3(η + µ)− γ)ψ3
+ (1− δ) a22. (35)

Substituting the value of a22 from (33) in (35), we have

a3 − δa22 =

L1(x)

{(
Ω(δ,κ) +

1

β

)
u2 +

(
Ω(δ,κ)− 1

β

)
v2

}
,

(36)
where

β = 2(3(η + µ)− γ)ψ3

Ω(δ,κ) =
(1− δ) [L1(κ)]2

2(b[L1(κ)]2 − s L2(κ))
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and b is given by (32). Then

∣∣a3 − δa22
∣∣ ≤



|L1(κ)|
(3(η + µ)− γ)ψ3

;

0 ≤ |Ω(δ, κ)| ≤ 1

β

2 |L1(κ)| |Ω(δ, κ)| ;

|Ω(δ, κ)| ≥ 1

β
,

which evidently completes the proof of Theorem 2.1.

In the next theorem, we determine the bounds
for |a2|, |a3| and |a3 − δa22| for function f ∈
M∗

σ(ξ, τ, λ, ν, q, x), the proof of which is omitted
as it is similar to that of Theorem 2.1.

Theorem 2.2. Let ξ ≥ 1, τ ≥ 1, 0 < q < 1, λ >

−1, ν > 0 and f(ς) = ς +
∞∑
n=2

anς
n be in the class

M∗
σ(ξ, τ, λ, ν, q, κ). Then

|a2| ≤
|p(x)|

√
|p(x)|√

|yp2(x)− 2zq(x)|
,

|a3| ≤
|p(x)|

3(3ξτ − 1)ψ3
+
p2(x)

z

and for δ ∈ R

∣∣a3 − δa22
∣∣ ≤



|p(x)|
3(3ξτ − 1)ψ3

, if |δ − 1| ≤ H

|p(x)|3 |δ − 1|
|yp2(x)− 2zq(x)|

,

if |δ − 1| ≥ H

where

y = [(3(3ξτ − 1)ψ3 − 8ξτ2(2ξ − 1)ψ2
2],

z = 4(2ξτ − 1)2ψ2
2

and

H =

∣∣yp2(x)− 2zq(x)
∣∣

3 (3ξτ − 1)ψ3p2(x)
.

3 Outcome of main results
We arrive at the following outcome when γ = 0 in
Theorem 2.1.

Corollary 3.1. Let τ ≥ 1, µ ≥ 0, 0 < q < 1, λ > −1,

ν > 0 and f(ς) = ς +
∞∑
n=2

anς
n be in the family

J∗∑(τ, µ, λ, ν, q, κ). Then

|a2| ≤
|p(κ)|

√
|p(κ)|√

|t1p2(κ)− 2s1q(κ)|
,

|a3| ≤
|p(κ)|

3(η + µ)ψ3
+
p2(κ)
s1

and for δ ∈ R

∣∣a3 − δa22
∣∣ ≤



|p(κ)|
3(η + µ)ψ3

, if |δ − 1| ≤ J1

|p(x)|3 |δ − 1|
|t1p2(κ)− 2s1q(κ)|

,

if |δ − 1| ≥ J3

.

where η is as in (18),

t1 = [3(η + µ)ψ3 − 2(τ(τ + 1) + 2µ(η + τ))ψ2
2],

s1 = 4η2ψ2
2

and

J1 =

∣∣t1p2(κ)− 2s1q(κ)
∣∣

3(η + µ)ψ3p2(κ)
We arrive at the following outcome by taking γ =

1 in Theorem 2.1.
Corollary 3.2. Let τ ≥ 1, µ ≥ 0, 0 < q < 1, λ >

−1, ν > 0 and f(ς) = ς +
∞∑
n=2

anς
n be in the set

K∗∑(τ, µ, λ, ν, q, κ). Then

|a2| ≤
|p(κ)|

√
|p(x)|√

|t2p2(κ)− 2s2q(κ)|
,

|a3| ≤
|p(κ)|

3(η + µ)− 1)ψ3
+
p2(κ)
s2

and for δ ∈ R

∣∣a3 − δa22
∣∣ ≤



|p(x)|
(3(η + µ)− 1)ψ3

, if |δ − 1| ≤ J2

|p(κ)|3 |δ − 1|
|t2p2(κ)− 2s2q(κ)|

,

if |δ − 1| ≥ J2

.

where η is as in (18),

t2 = [(3(η+µ)−1)ψ3−2(τ(τ+1)+2µ(η+τ)−η)ψ2
2],
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s2 = (2η − 1)2ψ2
2

and

J2 =

∣∣t2p2(κ)− 2s2q(κ)
∣∣

(3(η + µ)− 1)ψ3p2(κ)
.

We arrive at the following outcome by taking µ =
1 in Theorem 2.1.
Corollary 3.3. Let τ ≥ 1, 0 ≤ γ ≤ 1, 0 < q < 1,

λ > −1, ν > 0 and f(ς) = ς +
∞∑
n=2

anς
n be in the

family L∗∑(τ, γ, λ, ν, q, κ). Then

|a2| ≤
|p(κ)|

√
|p(κ)|√

|t3p2(κ)− 2s3q(κ)|
,

|a3| ≤
|p(κ)|

(3τ + 6− γ)ψ3
+
p2(κ)
s3

and for δ ∈ R

∣∣a3 − δa22
∣∣ ≤



|p(κ)|
(3τ + 6− γ)ψ3

, if |δ − 1| ≤ J3

|p(κ)|3 |δ − 1|
|t3p2(κ)− 2s3q(κ)|

,

if |δ − 1| ≥ J3

.

where

t3 = [(3τ+6−γ)ψ3−2(τ2+5τ+2−γ(τ+1))ψ2
2],

s3 = (2τ + 2− γ)2ψ2
2

and

J3 =

∣∣t3p2(κ)− 2s3q(κ)
∣∣

(3τ + 6− γ)ψ3p2(κ)
.

Setting ξ = 1 in Theorem 2.2,we obtain
Corollary 3.4. Let τ ≥ 1, 0 < q < 1, λ > −1,

ν > 0 and f(ς) = ς +
∞∑
n=2

anς
n be in the set

T ∗
σ (τ, λ, ν, q, κ). Then

|a2| ≤
|p(κ)|

√
|p(κ)|√

|y1p2(κ)− 2z1q(κ)|
,

|a3| ≤
|p(κ)|

3(3τ − 1)ψ3
+
p2(κ)
z1

and for δ ∈ R

∣∣a3 − δa22
∣∣ ≤



|p(κ)|
3(3τ − 1)ψ3

, if |δ − 1| ≤ H1

|p(κ)|3 |δ − 1|
|y1p2(κ)− 2z1q(κ)|

,

if |δ − 1| ≥ H1

where

y1 = [(3(3τ − 1)ψ3 − 8τ2ψ2
2],

z1 = 4(2τ − 1)2ψ2
2

and

H1 =

∣∣y1p2(κ)− 2z1q(κ)
∣∣

3 (3τ − 1)ψ3p2(κ)
.

4 Conclusions
Our investigation is motivated by the fruitful usage of
certain special polynomials and Bassel functions, in
the theory of bi-univalent functions. Making use of
the q-analoguue of Bassel functions, we have intro-
duced two subfamilies of bi-univalent (or bi-schlicht)
functions subordinate to (p, q)-Lucas polynomials.
For functions belonging to these subfamilies, we have
found the upper bounds of |a2|, |a3| and for δ a real
number the Fekete- Szegö functional |a3 − δa22| is
considered. The special cases and implications of the
main results have been identified. Finding estimate
on the bound of |an|, n ∈ R − {1, 2, 3} is an open
problem.
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