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Abstract: The generalized gamma-generated family adds one shape parameter to a baseline distri-
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new distribution is better than ten others known distributions using engineering-related data sets.
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1 Introduction

In the area of survival analysis and new distributions, much is said about proposing families and,
consequently, distributions, which model fatigue data sets, failure time of electronic components,
etc., which constitute engineering data.

Several types of data sets have been used for new distributions from medical and different
branches of engineering and industry. However, Brazilian data sets are seldom used in international
statistical papers. In this context, this work focuses on two applications in engineering area from
Brazil. In addition, given that many workers used data collected over 20 years, we adopt more recent
data sets.

The Weibull and Birnbaum-Saunders models are among the most widely distributions taken for
baseline for several generators in different areas of engineering. The main goal here is to propose
a new distribution that is as flexible as, or more than, the aforementioned, and that fits recent real
engineering data. We believe that this purpose is valid and innovative.

One of the most used methods in the construction of new lifetime distributions is based on well-
established generators by adding shape(s) parameters to parent models. This method is adopted in
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this paper. The proposed distribution is interesting for lifetime data analysis as a further option,
where some known distributions do not fit well.

The probability density function (pdf) and cumulative distribution function (cdf) of the gamma-
G family (Zografos and Balakrishnan, 2009) for a baseline G are

f
gg

(x;a,η) =
1

Γ (a)
{− log[1−G(x;η)]}a−1 g(x;η) (1)

and

F
gg

(x;a,η) =
γ (a,− log[1−G(x;η)])

Γ (a)
=

1
Γ (a)

∫ − log[1−G(x;η)]

0
ta−1e−tdt,

respectively, where a > 0, η is the q-parameter vector of the baseline distribution, g(x;η) =
dG(x;η)/dx, Γ (a) =

∫∞
0 ta−1 e−tdt is the gamma function and γ(a,z) =

∫ z
0 t

a−1 e−tdt denotes the lower
incomplete gamma function. This family is flexibilized by the shape parameter a and the support of
f
gg

(x) is the same of g(x).
Many papers adopt the gamma-G family in order to fit several types of data sets. The great ad-

vantage in choosing this family over that one proposed by Torabi and Hedesh (2012) is the reduction
in the problems of parameter estimation, since the proposal by Zografos and Balakrishnan (2009) has
one parameter less than the other one. There are many works involving this family and its structural
properties (Nadarajah et al., 2015). Table 1 lists some of its special models and associated data sets.
In all cases, the gamma-G provides better fits when compared with another well-know distributions
including beta-G models.

Table 1: Some gamma-G models
Model Authors (year) Application

Gamma-Birnbaum-
Saunders

Cordeiro et al. (2016) Failure and fatigue

Gamma-Normal Lima (2015) Agronomy and levels nico-
tine

Gamma-Lindley Lima (2015) Reliability and SAR images
Gamma-Nadarajah-
Haghighi

Lima (2015) Failure and fatigue

Gamma-Extended
Weibull

Lima (2015) Failure and fatigue

Gamma-Pareto Alzaatreh et al. (2012) River flood rates, fatigue and
frequencies for Tribolium
Confusum Strain

Gamma-Exponentiated
Weibull

Pinho et al. (2012) Daily minimum wind speed

Gamma exponentiated
exponential-Weibull
distribution

Pogány and Saboor (2016) Remission times and fatigue

Major topics studied in the sections are as follows. In Section 2, we define the gamma-Chen
(GC) model. In Section 3, we obtain some of its properties. In Section 4, we examine the accuracy
of the maximum likelihood estimators (MLEs). The superiority of the GC model in relation to ten
known distributions (including the well-known exponentiated Weibull model) is proved by means
of two engineering data sets in Section 5. These competitors were chosen based on previous works
in engineering data management (focus of the applications of this work). In Section 6, we conclude
the paper.
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2 Proposed model

In survival analysis it is very common to look for new distributions that have great versatility in the
hazard rate function (hrf). The most common forms of hrfs are bathtub and unimodal. Chen (2000)
proposed a two-parametric distribution that accommodates increasing and bathtub hrf forms, thus
showing the great flexibility of this distribution.

Recently, some extensions of the Chen distribution (Chen, 2000) have appeared in the literature.
Dey et al. (2017) proposed the exponentiated-Chen (exp-Chen) and showed that this distribution also
has unimodal hrf. Among others extensions, we can mention Kumaraswamy-exponentiated-Chen
(Khan et al., 2018) distribution, Weibull-Chen (Tarvirdizade and Ahmadpour, 2019) distribution,
modified Weibull extension (Xie et al., 2002) and odd Chen-G family (Anzagra et al., 2020).

The cdf and pdf of the random variable Y ∼ Chen(λ,β) are

G(y;λ,β) = 1− eλ(1−ey
β

), y > 0

and
g(y;λ,β) = λβyβ−1ey

β+λ(1−ey
β

), (2)

respectively, where λ > 0 is a scale parameter and β > 0 is a shape parameter.
The GC density is determined from (1) and the last two equations

f
gc

(x;a,λ,β) =
λaβ

Γ (a)
xβ−1 (ex

β
− 1)a−1 ex

β+λ (1−ex
β

), x > 0. (3)

For a = 1, we have the Chen density. Henceforth, X ∼ GC(a,λ,β) denotes a random variable with
pdf (3). The three-parameter GC distribution has no problem of identifiability. The Chen distribu-
tion is clearly identifiable since different parameter vectors imply different cumulative distributions.
So, the GC is also identifiable.

A simple motivation for the GC density follows from Zografos and Balakrishnan (2009). If Y(1) <
· · · < Y(p) < · · · are upper record values arising from a sequence of Chen independent and identically
random variables Y1,Y2, · · · , then the order statistic Y(p) has the GC density with a = p. So, the density
of X can approximate the density of the pth order statistic of the Chen(λ,β) distribution by taking
p as the greatest integer less than or equal to a. So, the GC distribution is generated by Chen record
value densities. This explicitly means that the GC distribution is a direct record-Chen analog.

A practical relevance and applicability of the GC distribution is for the lifetime system with n
independent components which function if and only if at least k of the components function is a “k
out of n” system. For such a system, k is less than n, and it includes some parallel, fail-safe and series
systems all as special cases for k = 1, k = n − 1 and k = n, respectively. Suppose Y1, · · · ,Yn denote the
lifetimes of n components having the Chen distribution of a system, where k is assumed unknown
and n is very large. Then, the lifetime of a k-out-of-n system consisting of these components can be
represented by the order statistic Y(n−k+1), which can be modeled by the GC distribution to estimate
a and then k.

Figure 1(a) displays plots of the density of X for some parameter values, which show that it
accommodates several forms. By combining different values of β and a provide great flexibility
for the GC density. In fact, this density can be symmetric, left-skewed or right-skewed, and the
parameter a has significant effects on both skewness and kurtosis.

The cdf and hrf of X are

F
gc

(x;a,λ,β) =
γ(a,−λ(1− ex

β
))

Γ (a)
,
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and

τ
gc

(x;a,λ,β) =
λaβ xβ−1 (ex

β − 1)a−1 ex
β+λ (1−ex

β
)

Γ (a)−γ(a,−λ(1− exβ ))
,

respectively. Note that for a = β = 1 the shape of the hrf is independent of λ. Chen (2000) showed
that the Chen hrf can only be increasing (β ≥ 1) and bathtub (β < 1). However, the hrf of X can be
increasing, decreasing, unimodal and bathtub-shaped as shown in Figure 1(b). Further, the bathtub
shape can be obtained even when β > 1. This fact reveals that the hrf of X gains more flexibility with
the extra parameter a since it can take the most four common forms for applications to real data:
increasing for any positive value of β, bathtub-shaped, unimodal, and also decreasing, which shows
that it has great flexibility due to the parameter a (see Figure 1(b)).

Following the idea in Qian (2012), we can to determine the parameter ranges for the density
shapes. Setting z = exp(xβ), we obtain from (3)

r(z) = f ([logz]1/β) =
λaβ logz
Γ (a)

(logz)−1/β(z − 1)a−1 exp[logz+λ(1− z)].

Applying logarithms of both sides of the previous equation,

logr(z) =a logλ+ logβ + log(logz)− logΓ (a)− 1
β

log(logz)

+ (a− 1)log(z − 1) + logz+λ(1− z).

By taking derivatives of both sides of the last equation, we have

r ′(z)
r(z)

=
1

z logz
− 1
βz logz

+
a− 1
z − 1

+
1
z
−λ

=
β(z − 1)− (z − 1) + βz(a− 1)logz+ β(z − 1)logz −λβz(z − 1)logz

βz(z − 1)logz
.

If s(z) is the numerator of the right side of this equation, we can write

r ′(z) =
r(z)s(z)

βz(z − 1)logz
.

Hence, r ′(z) and s(z) have the same signs, since r(z) > 0 and βz(z − 1)logz > 0 for z > 1. The
condition z > 1 holds since x > 0. In this case, x = log(z)1/β ⇐⇒ z > 1.

Note that in Region I (Figure 2(a)), s(z) takes positive values first and then negative values, which
indicates the unimodal property of the density. In Region II (Figure 2(b)), s(z) has only negative
values, thus indicating decreasing shape. So, Figures 2(a) and 2(b) reveal that the pdf is unimodal
for a ≥ 1 and that it is decreasing for a ∈ (0,1), respectively, as noted in Figure 1(a).

3 Properties

It is not possible to obtain some mathematical properties of the GC distribution in closed form,
that is, according to known mathematical functions. Then, we determine these quantities from the
weighted linear combination for its density function given in Theorem 2 below.

For a given cdf G(z;η) with q-parameter vector η, the cdf and pdf of the exponentiated-G (exp-G)
random variable Za with power parameter a > 0, say Za ∼ exp-G(a,η), are

H(z;a,η) = G(z;η)a and h(z;a,η) = ag(z;η)G(z;η)a−1,
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Figure 1: Plots of the pdf (a) and hrf (b) of the GC distribution.
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Figure 2: Regions for the density shapes. (a) Region I: a ≥ 1 and (b) Region II: a ∈ (0,1).

respectively, where g(z;η) = dG(z;η)/dz.
The gamma-G cdf can be expressed as (Castellares and Lemonte, 2015)

F
gg

(x;a,η) =
∞∑
k=0

ϕk(a)
(a+ k)

H(x; (a+ k),η), (4)
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where ϕ0(a) = 1
Γ (a) , ϕk(a) = (a−1)

Γ (a) ψk−1(k + a− 2) (k ≥ 1), ψk−1(·) are the Stirling polynomials

ψk−1(w) =
(−1)k−1

(k + 1)!

[
T k−1
k − (w+ 2)

(k + 2)
T k−2
k +

(w+ 2)(w+ 3)
(k + 2)(k + 3)

T k−3
k

−· · ·+ (−1)k−1 (w+ 2)(w+ 3) · · · (w+ k)
(k + 2)(k + 3) · · · (2k)

T 0
k

]
,

T 0
0 = 1, T 0

k+1 = 1× 3× . . .× (2k + 1), T kk+1 = 1 and Tmk are positive integers determined from

Tmk+1 = (2k + 1−m)Tmk + (k −m+ 1)Tm−1
k .

The function H(x; (a + k),η) denotes the cdf of Za+k . Thus, we can obtain the properties of the
gamma-G model from those of the exp-G class.

Theorem 1. Let Y be a random variable having density (2). Then, the exp-Chen(a,λ,β) density can be
expressed as

h(y;a,λ,β) =
∞∑
m=1

pm g(y;mλ,β),

where pm = pm(a) = (−1)m+1 ( a
m

)
and g(y;mλ,β) is the Chen density with scale mλ and shape β.

Proof. For |x| < 1 and any real a , 0, the power series

(1− x)a =
∞∑
m=0

(−1)m
(
a
m

)
xm

converges. Thus, the exp-Chen cdf can be expanded as

H(y;a,λ,β) =
[
1− eλ (1−ey

β
)
]a

= 1 +
∞∑
m=1

(−1)m
(
a
m

)
[1−G(y;mλ,β)].

By differentiating the last equation,

h(y;a,λ,β) =
∞∑
m=1

(−1)m+1
(
a
m

)
g(y;mλ,β),

and then the exp-Chen density is a linear combination of Chen densities. �

Theorem 2. The pdf of X in Equation (3) can be expressed as

f
gc

(x;a,λ,β) =
∞∑
m=1

wm g(x;mλ,β),

where g(x;mλ,β) is the Chen density with scale mλ and shape β and the weights are

wm = wm(a) = (−1)m+1
∞∑
k=0

ϕk(a)
(a+ k)

(
a+ k
m

)
.

Proof. The proof comes directly from Equation (4) and Theorem 1. �
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By using Theorem 2, the rth moment of X has the form

E[Xr ] =
∞∑
m=1

wmE[Y rm],

where Ym ∼ Chen(mλ,β).
If Y ∼ Chen(λ,β) has pdf (2), we can write (Pogány et al., 2017)

E[Y r ] = λeλDrβ−1

t

[
Γ (t + 1,λ)
λt+1

]
t=0
. (5)

Here,

D
p
t

[
Γ (t + 1,λ)
λt+1

]
t=0

= Γ (p+ 1)
∑
k≥0

(2)k
k!

Φ
(0,1)
µ,1 (−k,p+ 1,1) 1F1(k + 2;2;−λ),

where Φ
(0,1)
µ,1 (−a,p+ 1,1) =

∑
n≥0

(−a)n
n!(n+1)p+1 for µ ∈C, 1F1(a;b;x) =

∑
n≥0

(a)n
(b)n

xn
n! , for x,a ∈C and b ∈C\Z−0 ,

is the confluent hypergeometric function (Kilbas et al., 2006, page 29, Eq. 1.6.14) and (λ)η = Γ (λ+η)
Γ (λ) ,

for λ ∈C\{0}, is the generalized Pochhammer symbol with (0)0 = 1.
Thus, using (5), the rth moment of X can be reduced to

E[Xr ] = λ
∞∑
m=1

mwm emλDrβ−1

t

[
Γ (t + 1,mλ)

(mλ)t+1

]
t=0
.

Figures 3, 4 and 5 provide the plots of the mean and variance of X as functions of a, λ and
β, respectively, the other parameters being fixed. The mean and variance of X increase when a
increases. In turn, these measures decrease when λ increases. Further, the mean of X increases when
β increases and the variance of X increases to a maximum point and starts to decrease.
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Figure 3: Mean (a) and variance (b) plots of X as functions of a (λ = 2.4,β = 0.5).
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Figure 4: Mean (a) and variance (b) plots of X as functions of λ (a = 0.7,β = 1.4).
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Figure 5: Mean (a) and variance (b) plots of X as functions of β (a = 0.6,λ = 2.7).

Another type of measure that has great applicability is the incomplete moment. For z > 0,
the rth incomplete moment of the random variable Y with Chen distribution, say qr(z;λ,β) =∫ z

0 y
r g(y;λ,β)dy, follows from Pogány et al. (2017) as

qr(z;λ,β) = λeλ
∑
n,k≥0

k∑
j=1

(2)n+k

(2)n

(−1)n+j λn

n!k!(j + 1)rβ−1+1

(
k
j

)
γ
(
rβ−1, (j + 1)(1− z−1)

)
. (6)
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Thus, using Theorem 2 and Equation (6), the rth incomplete moment of X is

mr(z) = λ
∞∑
m=1

memλwm
∑
n,k≥0

k∑
j=1

(2)n+k

(2)n

(−1)n+j (mλ)n

n!k!(j + 1)rβ−1+1

(
k
j

)
γ
(
rβ−1, (1− z−1)(j + 1)

)
.

The first incomplete moment is used to obtain Lorenz and Bonferroni curves and mean devia-
tions.

The generating function (gf) of Y ∼ Chen(λ,β), MY (−t) = E[e−tY ], t > 0, can be written, according
to Pogány et al. (2017), by

MY (−t) = λβ eλ t−β
∑
n≥0

(−λ)n

n! 1Ψ0

[
(β,β);−;

n+ 1
tβ

]
, (7)

where

1Ψ0 [(a,b);−;z] =
∑
n≥0

Γ (a+ bn)zn

n!
, z,a ∈C,b > 0,

is the generalized Fox-Wright function.
Thus, from Theorem 2 and Equation (7), the gf of X follows as (for t > 0)

MX(−t) = λβ t−β
∞∑
m=1

∑
n≥0

memλ (−mλ)nwm
n! 1Ψ0

[
(β,β);−;

n+ 1
tβ

]
.

The quantile function (qf) of X, say Q
gg

(u;a,η) = F−1
gg

(u;a,η), can be expressed as (Nadarajah
et al., 2015)

Q
gg

(u;a,η) =Q
g

(
1− e−Q1(a,u);η

)
, 0 < u < 1,

whereQ
g

is the qf of the baseline G(x;η) andQ1(a,u) is the inverse function of γ1(a,w) = γ(a,w)/Γ (a).
Further, we can write

Q
gc

(u;a,λ,β) =
{
log

[
1 +λ−1Q1(a,u)

]}1/β
. (8)

We can obtain skewness and kurtosis measures of X from Equation (8). The Bowley skewness
and Moors kurtosis are based on quartiles and octiles, respectively. Letting Q

gc
(u) = Q

gc
(u;a,λ,β),

the skewness and kurtosis of X are

B(a,λ,β) =
Q

gc
(3/4) +Q

gc
(1/4)− 2Q

gc
(2/4)

Q
gc

(3/4)−Q
gc

(1/4)

and

M(a,λ,β) =
Q

gc
(7/8)−Q

gc
(5/8)−Q

gc
(3/8) +Q

gc
(1/8)

Q
gc

(6/8)−Q
gc

(2/8)
,

respectively. Plots of these measures as functions of a are displayed in Figure 6, which show that
both of them decrease when a increases. Both measures grow when a decreases from one, and they
can take negative values and higher positive values when a increases from one.
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Figure 6: Skewness (a) and kurtosis (b) plots of X as functions of a.

4 Estimation

Let θ = (a,λ,β)> be the parameter vector of the GC model. Consider the random variablesX1, . . . ,Xn ∼
GC(a,λ,β) with observed values x1, . . . ,xn. The log-likelihood function for θ is

`(θ) =n[a logλ+ logβ − logΓ (a) +λ] +
n∑
i=1

x
β
i + (β − 1)

n∑
i=1

logxi

+ (a− 1)
n∑
i=1

log(ex
β
i − 1)−λ

n∑
i=1

ex
β
i .

The maximum likelihood estimate (MLE) of θ, say θ̂, can be found by maximizing `(θ) numeri-
cally with respect to its components. Some routines such as SAS (PROC NLMIXED), R (optim function)
and Ox (sub-routine MaxBFGS) can be used for the maximization.

We now study the behavior of MLEs in the GC model from 1,000 Monte Carlo replications. All
simulations are performed using R Project (R Core Team, 2019). The sample sizes chosen are n = 25,
50, 100, 200, 300 and 400 and the true parameter vectors are: (a,λ,β) = (1.4,0.7,1.9) for scenario 1,
and (a,λ,β) = (2.5,1.5,0.8) for scenario 2. There were no special reasons for choosing these parame-
ters.

Table 2 reports the average estimates (AEs), biases and mean squared errors (MSEs) for both
scenarios. The MLEs converge to the true parameters and the biases and MSEs decrease to zero when
the sample size n increases, that makes us conclude that the consistency criterion holds.

5 Engineering data

In order to show a superior performance of the new distribution when compared to others already
published in the literature, we provide two applications in recent real data sets in the engineering
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Table 2: Findings under scenarios 1 to 2.
scenario 1

Par
n = 25 n = 50 n = 100

AE Bias MSE AE Bias MSE AE Bias MSE

a 1.965 0.565 5.503 1.656 0.256 1.634 1.496 0.096 0.485
λ 1.065 0.365 2.138 0.868 0.168 0.641 0.762 0.062 0.206
β 2.216 0.316 1.074 2.049 0.149 0.415 1.985 0.085 0.167

Par
n = 200 n = 300 n = 400

AE Bias MSE AE Bias MSE AE Bias MSE

a 1.442 0.042 0.155 1.436 0.036 0.108 1.419 0.019 0.081
λ 0.727 0.027 0.068 0.727 0.027 0.045 0.715 0.015 0.029
β 1.942 0.042 0.077 1.917 0.017 0.048 1.916 0.016 0.040

scenario 2

Par
n = 25 n = 50 n = 100

AE Bias MSE AE Bias MSE AE Bias MSE

a 1.965 0.465 7.624 1.808 0.308 4.813 1.621 0.121 1.326
λ 1.869 0.369 4.307 1.787 0.287 2.159 1.608 0.108 0.806
β 1.393 0.593 2.348 1.043 0.243 0.778 0.891 0.091 0.104

Par
n = 200 n = 300 n = 400

AE Bias MSE AE Bias MSE AE Bias MSE

a 1.539 0.039 0.400 1.547 0.047 0.225 1.477 -0.023 0.345
λ 1.542 0.042 0.246 1.546 0.046 0.155 1.506 0.006 0.134
β 0.851 0.051 0.077 0.819 0.019 0.021 0.839 0.039 0.053

area. In this work, we choose two types of engineering data sets to show the flexibility of the pro-
posed model. One related to ore wagon fleets and the other to natural gas; both sets belong to the
production engineering branch. Table 3 presents the descriptive statistics of the two data sets.

The first data set is obtained in a work by (Sivini, 2006), which involves the execution of a pilot
project of a reliability data applied in natural gas pressure reducing stations (ERPGN) of a com-
pany that operates in Pernambuco (Brazil). The data in question refer to the time until the mainte-
nance time (Tm) in one of the Pressure Reduction and Measurement Stations (ERPM - A) between
10/14/2002 to 05/16/2005.

The second application has a data set taken from the same work (Sivini, 2006). Here, we consider
Tm in ERPM B and C, collected between 11/14/2002 and 6/16/2005.

Table 3 gives the descriptive statistics of the two data sets. Note that the two data sets differ
widely. The first with a mean of 2.9222 and the second with a mean of 6.2062. Their maximum
values and standard deviations (SDs) are also very different.

5.1 Competitive distributions

We compare the GC model with other ten distributions: Chen, exponentiated Weibull (Mudholkar
and Hutson, 1993), Kumaraswamy-log-logistic (de Santana et al., 2012), gamma-extended Frèchet
(da Silva et al., 2013), beta-log-logistic (Lemonte, 2014), Birnbaum-Saunders (Birnbaum and Saun-
ders, 1969), gamma-Birnbaum-Saunders (Cordeiro et al., 2016), beta Birnbaum-Saunders (Cordeiro
and Lemonte, 2011), odd-log-logistic Birnbaum-Saunders (Ortega et al., 2016) and odd-log-logistic
Birnbaum-Saunders Poisson (Cordeiro et al., 2018).
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Table 3: Descriptive statistics.
Description data set 1 data set 2

Min. 1.1700 1.0000
1st Qu. 1.1900 3.0625
Median 1.5850 4.8350
Mean 2.9222 6.2062
3rd Qu. 4.9175 6.1250
Max. 8.0000 30.3300
SD 2.2553 6.7021

The choice of the previous distributions is based on suitable ones with good fits to engineering
data. We emphasize that other distributions could also be used.

The densities of the exponentiated Weibull (EW), Kumaraswamy-log-logistic (KLL), gamma-
extended Frèchet (GEF) and beta-log-logistic (BLL) are (for x > 0)
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respectively, where all parameters are positive.
The cdf and pdf of the Birnbaum-Saunders (BS) are

F
bs

(x;α,β) = Φ

 1
α

(xβ
) 1

2

−
(β
x

) 1
2


 , x > 0 (9)

and

f
bs

(x;α,β) =
exp(α−2)

2α
√

2πβ
x−

3
2 (x+ β)exp

[
− 1

2α2

(
x
β

+
β

x

)]
, (10)

respectively, where α,β > 0 and Φ(·) is the standard normal cdf.
The densities of the gamma-Birnbaum-Saunders (GBS), beta-Birnbaum-Saunders (BBS), odd-log-

logistic Birnbaum-Saunders (OLLBS) and odd-log-logistic Birnbaum-Saunders Poisson (OLLBSP)
distributions are given by

f
bg

(x;a,b,η) =
Γ (a)Γ (b)
Γ (a+ b)

g(x;η)G(x;η)a−1 Ḡ(x;η)b−1,
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f
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respectively, where a,b > 0 and Ḡ(x;η) = 1−G(x;η).
As for the simulations, we adopt the open source computing platform: R Project (R Core Team,

2019). The MLEs of the parameters of the fitted densities are calculated using the goodness.fit

function of the script AdequacyModel (Marinho et al., 2019) available in programming environment
R Project (R Core Team, 2019) with the BFGS method. The best models fitted to the data sets are
chosen based on the statistics: Cramèr-von Mises (W ∗), Anderson-Darling (A∗), Akaike Information
Criterion (AIC), Consistent Akaike Information Criterion (CAIC), Bayesian Information Criterion
(BIC), Hannan-Quinn Information Criterion (HQIC) and Kolmogorov-Smirnov (KS) and its p-value.

Initial parameter values are chosen based on a function created using the GenSA package from
R Project (Xiang et al., 2013). Such a package allows implementing a function that seeks the global
minimum of a given function with a large number of optimum points. Therefore, we insert functions
in R that take as arguments the data set to be used and the desired density. The functions in question
return the initial shots of the parameters in question.

5.2 Findings

Tables 4 and 5 give the MLEs and their standard errors (SEs) in parentheses and the information
criteria, respectively. The values for all statistics (except KS) in Table 5 indicate that the GC dis-
tribution is the best model to these data. Further, the p-values of the KS statistic also reveal that
all distributions (except BS, OLLBS and EW models) can be used to fit the current data. So, the
information criteria support that the CG distribution provides the best fit to these data. The plots of
the estimated pdfs and cdfs and the Kaplan-Meier (KM) estimate, for the two best models, displayed
in Figure 7 reveal that the GC distribution is the most adequate model to these data.

For the data set 2, the MLEs, SEs and information criteria are reported in Tables 6 and 7, respec-
tively. All information criteria also indicate to the CG distribution is the best model when compared
to the others. The p-values of the KS statistic show that the BS, OLLBS and OLLBSP models can
not be used for the current data. Based on the histogram, the estimated pdfs and cdfs and the KM
estimate (Figure 8), we can conclude that the GC distribution provides a better fit to these data.

The likelihood ratio (LR) statistics that compare the GC and Chen models, for the two data sets,
are reported in Table 8. For both data sets, the null hypothesis is rejected, and the GC distribution is
a more appropriate model for both data sets.

6 Conclusions

We introduce the gamma-Chen (GC) distribution which extends the Chen model. The new distribu-
tion adds an extra shape parameter thus giving greater flexibility. We obtain some of its mathemati-
cal properties. The hazard rate function of the GC distribution may have increasing, decreasing and
bathtub shapes. We show the consistency of the maximum likelihood estimators via Monte Carlo

SJS, VOL. 2, NO. 1 (2020), PP. 23 - 40
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Table 4: Fitted models to data set 1.
Model Estimates

BS(α,β) 29.9850 0.0034
(9.6966) (0.0017)

Chen(λ,β) 0.1410 0.5849
(0.0546) (0.0685)

OLLBS(α,β,a) 67.3595 2.1694 95.2768
(0.0294) (0.0294) (0.1584)

GBS(α,β,a) 0.6451 3.5546 0.5637
(0.1265) (0.3059) (0.1775)

GC(a,λ,β) 159.6704 84.6636 0.0685
(0.8199) (0.1208) (0.0088)

EW(a,λ,β) 0.0438 7.9268 40.2123
(0.0103) (0.0890) (0.0762)

BLL(a,b,α,β) 7.6014 493.3696 6999.9700 0.5272
(0.0003) (<0.0001) (1.8495) (0.0109)

GEF(a,λ,σ ,α) 1.1000 0.3263 1110.5080 999.9747
(<0.0001) (<0.0001) (<0.0001) 0.0027

KLL(a,b,α,δ) 20.5704 0.1668 0.7889 8.4532
(<0.0001) (0.0002) (0.0004) (0.0001)

OLLBSP(α,β,a,b) 479.9736 0.0513 182.0844 6.1178
(0.0004) (0.0004) (0.0019) (0.1940)

BBS(α,β,a,b) 86.2317 0.0551 0.0905 0.0800
(0.0010) (0.0120) (0.0010) (9.9186)

Table 5: Information criteria for data set 1.
Model W ∗ A∗ AIC CAIC BIC HQIC KS p-value (KS)
BS 0.3054 1.7138 113.8926 114.6926 115.6733 114.1381 0.7303 <0.0001
Chen 0.3229 1.7662 78.7075 79.5075 80.4882 78.9530 0.2450 0.2300
OLLBS 0.2973 1.6868 117.663 119.3773 120.3341 118.0313 0.7325 <0.0001
GBS 0.2999 1.6924 77.6396 79.3538 80.3107 78.0079 0.2339 0.2782
GC 0.2613 1.5455 73.9505 75.6648 76.6216 74.3188 0.2254 0.3198
EW 0.2775 1.5989 109.3646 111.0789 112.0357 109.7329 0.4288 0.0027
BLL 0.2716 1.5835 76.7815 79.8584 80.3429 77.2725 0.2368 0.2652
GEF 0.2900 1.6348 77.9778 81.0547 81.5392 78.4689 0.2553 0.1911
KLL 0.2673 1.5726 76.6320 79.7089 80.1934 77.1231 0.2255 0.3194
OLLBSP 0.2731 1.6114 78.3789 81.4559 81.9404 78.8700 0.2189 0.3544
BBS 0.2947 1.6678 78.8362 81.9131 82.3976 79.3273 0.2535 0.1976

simulations. We prove empirically that the new distribution is better than ten known distributions
by means of two real engineering data sets.
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Figure 7: Estimated (a) pdfs and (b) cdfs and empirical cdf for data set 1.

Table 6: Fitted models to data set 2.
Model Estimates

BS(α,β) 0.7743 4.7946
(0.1678) (0.0029)

Chen(λ,β) 0.1247 0.3990
(0.0473) (0.0385)

OLLBS(α,β,a) 0.9426 1252.8320 0.0075
(0.0004) (0.0319) (0.0014)

GBS(α,β,a) 0.6457 9.0578 0.4192
(0.0104) (0.0001) (0.1064)

GC(a,λ,β) 18.1587 6.5901 0.1705
(<0.0001) (0.2862) (0.0178)

EW(a,λ,β) 0.0685 5.5721 64.0574
(0.0171) (0.0018) (0.0018)

BLL(a,b,α,β) 5.4816 465.9178 7001.0060 0.6199
(0.0001) (0.0142) (0.0471) (0.0153)

GEF(a,λ,σ ,α) 0.2547 0.6594 102.7024 78.3443
(0.0634) (0.0013) (0.0051) (0.0015)

KLL(a,b,α,δ) 20.3658 37.5799 0.1393 0.4325
(0.0025) (<0.0001) (0.0763) (0.0633)

OLLBSP(α,β,a,b) 96.3598 9.0409 150.5198 0.1610
(0.0005) (0.0457) (1.7901) (0.0760)

BBS(α,β,a,b) 27.7816 12.3196 827.4882 879.9439
(7.9993) (4.5306) (0.0011) (0.0016)

SJS, VOL. 2, NO. 1 (2020), PP. 23 - 40
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Table 7: Information criteria for data set 2.
Model W ∗ A∗ AIC CAIC BIC HQIC KS p-value (KS)

BS 0.2187 1.3995 125.2946 126.2177 126.8398 125.3737 0.6726 <0.0001
Chen 0.2981 1.8112 100.0162 100.9393 101.5614 100.0953 0.2800 0.1626
OLLBS 0.1231 0.7648 127.8833 129.8833 130.2011 128.0020 0.6861 <0.0001
GBS 0.1217 0.7848 90.1436 92.1436 92.4614 90.2623 0.2116 0.4709
GC 0.1109 0.7403 89.9507 91.9507 92.2685 90.0694 0.2030 0.5245
EW 0.1154 0.7746 90.3318 92.3318 92.6496 90.4505 0.2156 0.4468
BLL 0.1295 0.8653 93.2454 96.8818 96.3358 93.4037 0.2162 0.4433
GEF 0.2212 1.3587 98.9108 102.5472 102.0012 99.0691 0.2226 0.4059
KLL 0.1179 0.7944 92.7261 96.3625 95.8165 92.8844 0.1992 0.5494
OLLBSP 0.1779 1.0750 193.8526 197.4889 196.9429 194.0108 0.5065 0.0005
BBS 0.1515 0.9833 94.2090 97.8454 97.2994 94.3673 0.2599 0.2300

Table 8: LR test (GC vs Chen).
Description hypothesis LR p-value

data set 1 H0 : a = 1 vs H1 : a , 1 6.7570 0.0093
data set 2 H0 : a = 1 vs H1 : a , 1 12.0655 0.0005
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Figure 8: Estimated (a) pdfs and (b) cdfs and empirical cdf for data set 2.
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