Time variations in the generation time of an infectious disease: Implications for sampling to appropriately quantify transmission potential

  • Received: 01 November 2009 Accepted: 29 June 2018 Published: 01 October 2010
  • MSC : Primary: 00A71, 37N25; Secondary: 92C60, 92D30.

  • Although the generation time of an infectious disease plays a key role in estimating its transmission potential, the impact of the sampling time of generation times on the estimation procedure has yet to be clarified. The present study defines the period and cohort generation times, both of which are time-inhomogeneous, as a function of the infection time of secondary and primary cases, respectively. By means of analytical and numerical approaches, it is shown that the period generation time increases with calendar time, whereas the cohort generation time decreases as the incidence increases. The initial growth phase of an epidemic of Asian influenza A (H2N2) in the Netherlands in 1957 was reanalyzed, and estimates of the basic reproduction number, $R_0$, from the Lotka-Euler equation were examined. It was found that the sampling time of generation time during the course of the epidemic introduced a time-effect to the estimate of $R_0$. Other historical data of a primary pneumonic plague in Manchuria in 1911 were also examined to help illustrate the empirical evidence of the period generation time. If the serial intervals, which eventually determine the generation times, are sampled during the course of an epidemic, direct application of the sampled generation-time distribution to the Lotka-Euler equation leads to a biased estimate of $R_0$. An appropriate quantification of the transmission potential requires the estimation of the cohort generation time during the initial growth phase of an epidemic or adjustment of the time-effect (e.g., adjustment of the growth rate of the epidemic during the sampling time) on the period generation time. A similar issue also applies to the estimation of the effective reproduction number as a function of calendar time. Mathematical properties of the generation time distribution in a heterogeneously mixing population need to be clarified further.

    Citation: Hiroshi Nishiura. Time variations in the generation time of an infectious disease:Implications for sampling to appropriately quantify transmissionpotential[J]. Mathematical Biosciences and Engineering, 2010, 7(4): 851-869. doi: 10.3934/mbe.2010.7.851

    Related Papers:

  • Although the generation time of an infectious disease plays a key role in estimating its transmission potential, the impact of the sampling time of generation times on the estimation procedure has yet to be clarified. The present study defines the period and cohort generation times, both of which are time-inhomogeneous, as a function of the infection time of secondary and primary cases, respectively. By means of analytical and numerical approaches, it is shown that the period generation time increases with calendar time, whereas the cohort generation time decreases as the incidence increases. The initial growth phase of an epidemic of Asian influenza A (H2N2) in the Netherlands in 1957 was reanalyzed, and estimates of the basic reproduction number, $R_0$, from the Lotka-Euler equation were examined. It was found that the sampling time of generation time during the course of the epidemic introduced a time-effect to the estimate of $R_0$. Other historical data of a primary pneumonic plague in Manchuria in 1911 were also examined to help illustrate the empirical evidence of the period generation time. If the serial intervals, which eventually determine the generation times, are sampled during the course of an epidemic, direct application of the sampled generation-time distribution to the Lotka-Euler equation leads to a biased estimate of $R_0$. An appropriate quantification of the transmission potential requires the estimation of the cohort generation time during the initial growth phase of an epidemic or adjustment of the time-effect (e.g., adjustment of the growth rate of the epidemic during the sampling time) on the period generation time. A similar issue also applies to the estimation of the effective reproduction number as a function of calendar time. Mathematical properties of the generation time distribution in a heterogeneously mixing population need to be clarified further.


    加载中
  • Reader Comments
  • © 2010 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3007) PDF downloads(870) Cited by(41)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog