The Development of Finger Rehabilitation Device for Stroke Patients

Article Preview

Abstract:

Most stroke patients who have lost the ability to use their fingers do not recover the functions of the fingers in their activity of daily living (ADL). This paper presents a novel approach in finger rehabilitation for acute paralysed stroke survivors. Based on repetitive exercise concept, the device is designed to provide support for fingers to do flexion and extension movements according to the patients range of motion. A conceptual design of the device is proposed after considering the current mechanism and control from similar current devices published and commercialised. A comparison between 4 existing main working mechanisms: (1) Pneumatic Cylinders, (2) Artificial Rubber Muscles, (3) Linkage Mechanism, (4) Cable-Driven Mechanism is also provided in this paper. The key for designing the device is home-based practice, easy to use and affordable. Further investigation and experiments on the proposed: Cable Actuated Finger Exoskeleton (CAFEx) are currently still in progress.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

604-610

Citation:

Online since:

September 2013

Export:

Price:

[1] D. L. Scott, F. Wolfe, and T. W. J. Huizinga, Rheumatoid arthritis, The Lancet, vol. 376, no. 9746, p.1094–1108, (2010).

DOI: 10.1016/s0140-6736(10)60826-4

Google Scholar

[2] AFM, Arthritis Foundation Malaysia - All About Arthritis, Keep Smiling, vol. 18, (2008).

Google Scholar

[3] K. P. Machold, Prevention and cure of rheumatoid arthritis: Is it possible?, Best Practice & Research Clinical Rheumatology, vol. 24, no. 3, p.353–361, (2010).

DOI: 10.1016/j.berh.2009.12.014

Google Scholar

[4] WHO, Part 1: Ten Statistical Highlights in Global Public Health, World Health Statistics, (2007).

Google Scholar

[5] N. J. Seo, W. Z. Rymer, and D. G. Kamper, Delays in Grip Initiation and Termination in Persons With Stroke: Effects of Arm Support and Active Muscle Stretch Exercise, Journal of Neurophysiology, vol. 101, no. 6, p.3108–3115, (2009).

DOI: 10.1152/jn.91108.2008

Google Scholar

[6] N. Maclean, P. Pound, C. Wolfe, and A. Rudd, Qualitative analysis of stroke patients' motivation for rehabilitation, BMJ British Medical Journal, vol. 321, no. 7268, p.1051–1054, (2000).

DOI: 10.1136/bmj.321.7268.1051

Google Scholar

[7] R. Colombo, F. Pisano, A. Mazzone, C. Delconte, S. Micera, M. C. Carrozza, P. Dario, and G. Minuco, Design strategies to improve patient motivation during robot-aided rehabilitation, Journal of NeuroEngineering and Rehabilitation, vol. 4, no. 3, p.3, (2007).

DOI: 10.1186/1743-0003-4-3

Google Scholar

[8] L. Rosenstein, A. L. Ridgel, A. Thota, B. Samame, and J. L. Alberts, Effects of combined robotic therapy and repetitive-task practice on upper-extremity function in a patient with chronic stroke, Am J Occup Ther, vol. 62, no. 1, p.28–35, (2008).

DOI: 10.5014/ajot.62.1.28

Google Scholar

[9] L. K. Kwah, L. A. Harvey, J. H. Diong, and R. D. Herbert, Half of the adults who present to hospital with stroke develop at least one contracture within six months: an observational study, J Physiother, vol. 58, no. 1, p.41–47, (2012).

DOI: 10.1016/s1836-9553(12)70071-1

Google Scholar

[10] R. M. N. Alexander, The Human Machine. Columbia University Press, (1992).

Google Scholar

[11] D. C. Riordan, A Walk through the Anatomy of the Hand and Forearm, Journal of Hand Therapy, vol. 8, no. 2, p.68–78, (1995).

DOI: 10.1016/s0894-1130(12)80302-4

Google Scholar

[12] J. McDonald, J. Toro, K. Alkoby, A. Berthiaume, R. Carter, P. Chomwong, J. Christopher, M. J. Davidson, J. Furst, B. Konie, G. Lancaster, L. Roychoudhuri, E. Sedgwick, N. Tomuro, and R. Wolfe, An improved articulated model of the human hand, The Visual Computer, vol. 17, no. 3, p.158–166, (2001).

DOI: 10.1007/s003710100104

Google Scholar

[13] D. McDougall, Modern concepts in hand orthotics., Prosthetics and orthotics international, vol. 1, no. 2, p.107–10, Aug. (1977).

DOI: 10.3109/03093647709164617

Google Scholar

[14] H. Watanabe, K. Ogata, T. Okabe, and T. Amano, Hand orthosis for various finger impairments-the K U finger splint., Prosthetics and orthotics international, vol. 2, no. 2, p.95–100, (1978).

DOI: 10.3109/03093647809177776

Google Scholar

[15] T. M. W. Burton, R. Vaidyanathan, S. C. Burgess, A. J. Turton, and C. Melhuish, Development of a parametric kinematic model of the human hand and a novel robotic exoskeleton, in Rehabilitation Robotics (ICORR), 2011 IEEE International Conference on, 2011, p.1.

DOI: 10.1109/icorr.2011.5975344

Google Scholar

[16] R. Morales, F. J. Badesa, N. Garcia-Aracil, J. M. Sabater, and C. Perez-Vidal, Pneumatic robotic systems for upper limb rehabilitation, Med Biol Eng Comput, vol. 49, no. 10, p.1145–1156, (2011).

DOI: 10.1007/s11517-011-0814-3

Google Scholar

[17] Festo Exo-Hand., [Online]. Available: http: /www. festo. com/cms/en_corp/12713. htm.

Google Scholar

[18] K. I. Motoki Takagi  Yoshiyuki Takahashi, Shin0-Ichiroh Yamamoto, Hiroyuki Koyama, Takashi Komeda, Development of A Grip Aid System using Air Cylinders, IEEE International Conference on Robotics & Automation, (2009).

DOI: 10.1109/robot.2009.5152246

Google Scholar

[19] M. A. Kotaro Tadano  Kazuo Kadota, Kenji Kawashima, Development of Grip Amplified Glove using Bi-articular Mechanism with Pneumatic Artifical Rubber Muscle, IEEE International Conference on Robotics & Automation, (2010).

DOI: 10.1109/robot.2010.5509393

Google Scholar

[20] T. N. Yuko Kadowaki  Masahiro Takaiwa, Daisuke Sasaki, Machiko Kato, Development of Soft Power-Assist Glove and Control Based on Human Intent, Journal of Robotics and Mechatronics, vol. 23, no. 2, p.281–282, (2011).

DOI: 10.20965/jrm.2011.p0281

Google Scholar

[21] M. S. O. Shahrol Mohamaddan, Development of Grip Mechanism Assistant Device For Finger Rehabilitation, Service Robotics and Mechatronics, p.95–100, (2008).

DOI: 10.1007/978-1-84882-694-6_17

Google Scholar

[22] E. T. Wolbrecht, D. J. Reinkensmeyer, and A. Perez-Gracia, Single degree-of-freedom exoskeleton mechanism design for finger rehabilitation, in Rehabilitation Robotics (ICORR), 2011 IEEE International Conference on, 2011, p.1–6.

DOI: 10.1109/icorr.2011.5975427

Google Scholar

[23] D. Kamper, Development of an actuated cable orthotic glove to provide assistance of fi nger extension to stroke survivors, p.75–82, (2009).

Google Scholar

[24] Y. M. Yasuhisa Hasegawa  Kosuke Watanabe, Yoshiyuki Sankai, Five-Fingered Assistive Hand with Mechanical Complience of Human Finger, IEEE International Conference on Robotics & Automation, (2008).

DOI: 10.1109/robot.2008.4543290

Google Scholar

[25] S. Mohamaddan and T. Komeda, Wire-driven mechanism for finger rehabilitation device, in Mechatronics and Automation (ICMA), 2010 International Conference on, 2010, p.1015–1018.

DOI: 10.1109/icma.2010.5588077

Google Scholar