Bio-Rapid-Prototyping of Tissue Engineering Scaffolds and the Process-Induced Cell Damage

Article Preview

Abstract:

Tissue scaffolds play a vital role in tissue engineering by providing a native tissue-mimicking environment for cell proliferation and differentiation as well as tissue regeneration. Fabrication of tissue scaffolds has been drawing increasing research attention and a number of fabrication techniques have been developed. To better mimic the microenvironment of native tissues, novel techniques have emerged in recent years to encapsulate cells into the engineered scaffolds during the scaffold fabrication process. Among them, bio-Rapid-Prototyping (bioRP) techniques, by which scaffolds with encapsulated cells can be fabricated with controlled internal microstructure and external shape, shows significant promise. It is noted in the bioRP processes, cells may be continuously subjected to environmental stresses such as mechanical, electrical forces and laser exposure. If the stress is greater than a certain level, the cell membrane may be ruptured, leading to the so-called process-induced cell damage. This paper reviews various cell encapsulation techniques for tissue scaffold fabrication, with emphasis on the bioRP technologies and their technical features. To understand the process-induced cell damage in the bioRP processes, this paper also surveys the cell damage mechanisms under different stresses. The process-induced cell damage models are also examined to provide a cue to the cell viability preservation in the fabrication process. Discussions on further improvements of bioRP technologies are given and ongoing research into mechanical cell damage mechanism are also suggested in this review.

You might also be interested in these eBooks

Info:

Pages:

1-23

Citation:

Online since:

June 2013

Export:

Price:

[1] R. Langer and J.P Vacanti, Tissue engineering, Science, (1993), 260 (5110), 920-926.

DOI: 10.1126/science.8493529

Google Scholar

[2] L.E Niklason, R. Langer, Prospects for organ and tissue replacement, JAMA, (2001), 285(5), 573-576.

DOI: 10.1001/jama.285.5.573

Google Scholar

[3] J.R Fuchs, B.A Nasseri, J.P Vacanti, Tissue engineering: a 21st century solution to surgical reconstruction, Ann. Thorac. Surg., (2001), 72 (2), 577-591.

DOI: 10.1016/s0003-4975(01)02820-x

Google Scholar

[4] U.A Stock, J.P Vacanti, Tissue engineering: current state and prospects, Ann. Rev. Med., (2001), 52, 443-451.

DOI: 10.1146/annurev.med.52.1.443

Google Scholar

[5] M.J Whitaker, R.A Quirk, S.M Howdle, K.M Shakesheff, Growth factor release from tissue engineering scaffolds, J Pharm. Pharmacol., (2001), 53 (11), 1427-1437.

DOI: 10.1211/0022357011777963

Google Scholar

[6] G.D Nicodemus, S.J Bryant, Cell encapsulation in biodegradable hydrogels for tissue engineering applications, Tiss. Eng. Part B Rev., (2008), 14 (2), 149-165.

DOI: 10.1089/ten.teb.2007.0332

Google Scholar

[7] A.P Mcguigan, M.V Sefton, Design and fabrication of sub-mm-sized modules containing encapsulated cells for modular tissue engineering, Tissue Eng., (2007), 13 (5), 1069-1078.

DOI: 10.1089/ten.2006.0253

Google Scholar

[8] T.B.F Woodfield, C.A Van Blitterswijk, J. De Wijn, T.J Sims, A.P Hollander, J. Riesle, Polymer scaffolds fabricated with pore-size gradients as a model for studying the zonal organization within tissue-engineered cartilage constructs, Tissue Eng., (2005), 11 (9-10), 1297-1311.

DOI: 10.1089/ten.2005.11.1297

Google Scholar

[9] E. Alsberg, K.W Anderson, A. Albeiruti, R.T Franceschi, D.J Mooney, Cell-interactive alginate hydrogels for bone tissue engineering, J Dental Res., (2001), 80 (11), 2025-2029.

DOI: 10.1177/00220345010800111501

Google Scholar

[10] E. Bell, Tissue Engineering in Perspective, in Principles of Tissue Engineering (Second Edition), Academic Press, (2000).

Google Scholar

[11] J. Fukuda, A. Khademhosseini, Y. Yeo, X.Y Yang, J. Yeh, G. Eng, J. Blumling, C.F Wang, D.S Kohane, R. Langer, Micromolding of photocrosslinkable chitosan hydrogel for spheroid microarray and co-cultures, Biomaterials, (2006), 27 (30), 5259-5267.

DOI: 10.1016/j.biomaterials.2006.05.044

Google Scholar

[12] J. Yeh, Y . Ling, J . Karp, J. Gantz, A. Chandawarkar, G. Eng, J. Blumling, R. Langer, A. Khademhosseini, Micromolding of shape-controlled, harvestable cell-laden hydrogels, Biomaterials, (2006), 27 (31), 5391-5398.

DOI: 10.1016/j.biomaterials.2006.06.005

Google Scholar

[13] A. Khademhosseini, R. Langer, Microengineered hydrogels for tissue engineering, Biomaterials, (2007), 28 (34), 5087-5092.

DOI: 10.1016/j.biomaterials.2007.07.021

Google Scholar

[14] M.G Li, X.Y Tian, N. Zhu, D.J Schreyer, X.B Chen, Modelling Process-Induced Cell Damage in the Biodispensing Process, Tissue Eng. Part C Methods, (2010), 16 (3), 533-542.

DOI: 10.1089/ten.tec.2009.0178

Google Scholar

[15] K.A Barbee, Mechanical cell injury, Ann. N Y Acad. Sci., (2005), 1066, 67-84.

Google Scholar

[16] M. Grigioni, C. Daniele, U. Morbiducci, G. D'Avenio, G. Di Benedetto, V. Barbaro, The power-law mathematical model for blood damage prediction: Analytical developments and physical inconsistencies, Artif. Organs, (2004), 28 (5), 467-475.

DOI: 10.1111/j.1525-1594.2004.00015.x

Google Scholar

[17] M. Grigioni, U. Morbiducci, G. D'Avenio, G. Di Benedetto, C. Del Gaudio, A novel formulation for blood trauma prediction by a modified power-law mathematical model, Biomech. Model. Mechanobiol., (2005), 4 (4), 249-260.

DOI: 10.1007/s10237-005-0005-y

Google Scholar

[18] R.G.M Breuls, C.V.C Bouten, C.W.J Oomens, D.L Bader, F.P.T Baaijens, A theoretical analysis of damage evolution in skeletal muscle tissue with reference to pressure ulcer development, J Biomech. Eng., (2003), 125 (6), 902-909.

DOI: 10.1115/1.1634287

Google Scholar

[19] N.E Fedorovich, J. Alblas, J.R de Wijn, W.E Hennink, A.J Verbout, W.J Dhert, Hydrogels as extracellular matrices for skeletal tissue engineering: state-of-the-art and novel application in organ printing, Tissue Eng., (2007), 13 (8), 1905-1925.

DOI: 10.1089/ten.2006.0175

Google Scholar

[20] D.J Odde, M.J Renn, Laser-guided direct writing of living cells, Biotechnol. Bioeng., (2000), 67 (3), 312-318.

DOI: 10.1002/(sici)1097-0290(20000205)67:3<312::aid-bit7>3.0.co;2-f

Google Scholar

[21] Y. Nahmias, D.J Odde, Micropatterning of living cells by laser-guided direct writing: application to fabrication of hepatic-endothelial sinusoid-like structures, Nat. Protoc., (2006), 1 (5), 2288-2296.

DOI: 10.1038/nprot.2006.386

Google Scholar

[22] Y. Lin, G. Huang, Y. Huang, T. Tzeng, D. Chrisey, Effect of laser fluence in laser-assisted direct writing of human colon cancer cell, Rapid Prototyping Journal, (2010), 16 (3), 202-208.

DOI: 10.1108/13552541011034870

Google Scholar

[23] R.K Pirlo, D.M Dean, D.R Knapp, B.Z Gao, Cell deposition system based on laser guidance, Biotechnol. J, (2006), 1 (9), 1007-1013.

DOI: 10.1002/biot.200600127

Google Scholar

[24] J.A Barron, P. Wu, H.D Ladouceur, B.R Ringeisen, Biological laser printing: A novel technique for creating heterogeneous 3-dimensional cell patterns, Biomed. Microdevices, (2004), 6 (2), 139-147.

DOI: 10.1023/b:bmmd.0000031751.67267.9f

Google Scholar

[25] C. Mézel, A. Souquet, L. Hallo, F. Guillemot, Bioprinting by laser-induced forward transfer for tissue engineering applications: jet formation modelling, Biofabrication, (2010), 2 (1), 014103.

DOI: 10.1088/1758-5082/2/1/014103

Google Scholar

[26] I. Elloumi Hannachi, K. Itoga, Y. Kumashiro, J. Kobayashi, M. Yamato, T. Okano, Fabrication of transferable micropatterned-co-cultured cell sheets with microcontact printing, Biomaterials, (2009), 30 (29), 5427-5432.

DOI: 10.1016/j.biomaterials.2009.06.033

Google Scholar

[27] J.A Barron, D.B Krizman, B.R Ringeisen, Laser printing of single cells: Statistical analysis, cell viability, and stress, Ann. Biomed. Eng., (2005), 33 (2), 121-130.

DOI: 10.1007/s10439-005-8971-x

Google Scholar

[28] B. Dhariwala, E. Hunt, T. Boland, Rapid prototyping of tissue-engineering constructs, using photopolymerizable hydrogels and stereolithography, Tissue Eng., (2004), 10 (9-10), 1316-1322.

DOI: 10.1089/1076327042500256

Google Scholar

[29] A. Ashkin, J.M Dziedzic, T. Yamane, Optical Trapping and Manipulation of Single Cells Using Infrared-Laser Beams, Nature, (1987), 330 (6150), 769-771.

DOI: 10.1038/330769a0

Google Scholar

[30] A. Ashkin, J.M Dziedzic, Optical Trapping and Manipulation of Viruses and Bacteria, Science, (1987), 235 (4795), 1517-1520.

DOI: 10.1126/science.3547653

Google Scholar

[31] D.J Odde, M.J Renn, Laser-guided direct writing for applications in biotechnology, Trends Biotechnol., (1999), 17 (10), 385-389.

DOI: 10.1016/s0167-7799(99)01355-4

Google Scholar

[32] H. Liang, K.T Vu, P. Krishnan, T.C Trang, D. Shin, S. Kimel, M.W Berns, Wavelength dependence of cell cloning efficiency after optical trapping, Biophys J., (1996), 70 (3), 1529-1533.

DOI: 10.1016/s0006-3495(96)79716-3

Google Scholar

[33] R.K Pirlo, Z. Ma, A. Sweeney, H. Liu, J.X Yun, X. Peng, X. Yuan, G.X Guo, B.Z Gao, Laser-guided cell micropatterning system, Rev. Sci. Instrum., (2011), 82 (1), 013708.

DOI: 10.1063/1.3529919

Google Scholar

[34] Y. Nahmias, R.E Schwartz, C.M Verfaillie, D.J Odde, Laser-guided direct writing for three-dimensional tissue engineering, Biotechnol. Bioeng., (2005), 92 (2), 129-136.

DOI: 10.1002/bit.20585

Google Scholar

[35] C. Mézel, A. Souquet, L. Hallo, F. Guillemot, Bioprinting by laser-induced forward transfer for tissue engineering applications: jet formation modelling, Biofabrication, (2010), 2 (1), 014103.

DOI: 10.1088/1758-5082/2/1/014103

Google Scholar

[36] F. Guillemot, A. Souquet, S. Catros, B. Guillotin, J. Lopez, M. Faucon, B. Pippenger, R. Bareille, M. Rémy, S. Bellance, P. Chabassier, J.C Fricain, J. Amédée, High-throughput laser printing of cells and biomaterials for tissue engineering, Acta Biomater., (2010), 6 (7), 2494-2500.

DOI: 10.1016/j.actbio.2009.09.029

Google Scholar

[37] L. Koch, S. Kuhn, H. Sorg, M. Gruene, S. Schlie, R. Gaebel, B. Polchow, K. Reimers, S. Stoelting, N. Ma, P.M Vogt, G. Steinhoff, B. Chichkov, Laser printing of skin cells and human stem cells, Tissue Eng. Part C Methods, (2010), 16 (5), 847-854.

DOI: 10.1089/ten.tec.2009.0397

Google Scholar

[38] B.R Ringeisen, H. Kim, J.A Barron, D.B Krizman, D.B Chrisey, S. Jackman, R.Y Auyeung, B.J Spargo, Laser printing of pluripotent embryonal carcinoma cells, Tissue Eng., (2004), 10 (3-4), 483-491.

DOI: 10.1089/107632704323061843

Google Scholar

[39] B. Guillotin, A. Souquet, S. Catros, M. Duocastella, B. Pippenger, S. Bellance, R. Bareille, M. Remy, L. Bordenave, J. Amedee, F. Guillemot, Laser assisted bioprinting of engineered tissue with high cell density and microscale organization, Biomaterials, (2010), 31 (28), 7250-7256.

DOI: 10.1016/j.biomaterials.2010.05.055

Google Scholar

[40] J.A Barron, B.J Spargo, B.R Ringeisen, Biological laser printing of three dimensional cellular structures, Applied Physics A, (2004), 79 (4-6), 1027-1030.

DOI: 10.1007/s00339-004-2620-3

Google Scholar

[41] M. Gruene, C. Unger, L. Koch, A. Deiwick, B. Chichkov, Dispensing pico to nanolitre of a natural hydrogel by laser-assisted bioprinting, Biomed. Eng. Online, (2011), 10, 19, PMC3058070.

DOI: 10.1186/1475-925x-10-19

Google Scholar

[42] M. Gruene, M. Pflaum, C. Hess, S. Diamantouros, S. Schlie, A. Deiwick, L. Koch, M. Wilhelmi, S. Jockenhoevel, A. Haverich, B. Chichkov, Laser Printing of Three-Dimensional Multicellular Arrays for Studies of Cell-Cell and Cell-Environment Interactions, Tissue Eng. Part C Methods, (2011), 17 (10), 973-82.

DOI: 10.1089/ten.tec.2011.0185

Google Scholar

[43] A. Ovsianikov, M. Gruene, M. Pflaum, L. Koch, F. Maiorana, M. Wilhelmi, A. Haverich, B. Chichkov, Laser printing of cells into 3D scaffolds, Biofabrication, (2010), 2 (1), 014104.

DOI: 10.1088/1758-5082/2/1/014104

Google Scholar

[44] M.M Stevens, M. Mayer, D.G Anderson, D.B Weibel, G.M Whitesides, R. Langer, Direct patterning of mammalian cells onto porous tissue engineering substrates using agarose stamps, Biomaterials, (2005), 26 (36), 7636-7641.

DOI: 10.1016/j.biomaterials.2005.05.001

Google Scholar

[45] M.S Hahn, L.J Taite, J.J Moon, M.C Rowland, K.A Ruffino, J.L West, Photolithographic patterning of polyethylene glycol hydrogels, Biomaterials, (2006), 27 (12), 2519-2524.

DOI: 10.1016/j.biomaterials.2005.11.045

Google Scholar

[46] J.M Karp, Y. Yeo, W. Geng, C. Cannizarro, K. Yan, D.S Kohane, G. Vunjak-Novakovic, R.S Langer, M. Radisic, A photolithographic method to create cellular micropatterns, Biomaterials, (2006), 27 (27), 4755-4764.

DOI: 10.1016/j.biomaterials.2006.04.028

Google Scholar

[47] K. Arcaute, B.K Mann, R.B Wicker, Stereolithography of three-dimensional bioactive poly(ethylene glycol) constructs with encapsulated cells, Ann. Biomed. Eng., (2006), 34 (9), 1429-1441.

DOI: 10.1007/s10439-006-9156-y

Google Scholar

[48] G. Mapili, Y. Lu, S. Chen, K. Roy, Laser-layered microfabrication of spatially patterned functionalized tissue-engineering scaffolds, J. Biomed. Mater. Res. B Appl. Biomater., (2005), 75 (2), 414-424.

DOI: 10.1002/jbm.b.30325

Google Scholar

[49] Y-C Chen, R. Gauvin, J.W Lee, P. Soman, P. Zorlutuna, J.W Nichol, H. Bae, S. Chen, A. Khademhosseini, Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography, Biomaterials, (2012), 33 (15), 3824-3834.

DOI: 10.1016/j.biomaterials.2012.01.048

Google Scholar

[50] H. Lin, D. Zhang, P.G Alexander, G. Yang, J. Tan, A.W Cheng, R.S Tuan, Application of visible light-based projection stereolithography for live cell-scaffold fabrication with designed architecture, Biomaterials, (2013), 34 (2), 331-339.

DOI: 10.1016/j.biomaterials.2012.09.048

Google Scholar

[51] Y. Lu, G. Mapili, G. Suhali, S. Chen, K. Roy, A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds, J. Biomed. Mater. Res. A, (2006), 77 (2), 396-405.

DOI: 10.1002/jbm.a.30601

Google Scholar

[52] K.W Kwon, J.C Choi, K.Y Suh, J. Doh, Multiscale fabrication of multiple proteins and topographical structures by combining capillary force lithography and microscope projection photolithography, Langmuir, (2011), 27 (12), 7966.

DOI: 10.1021/la2014094

Google Scholar

[53] B.R Ringeisen, C.M Othon, J.A Barron, D. Young, B.J Spargo, Jet-based methods to print living cells, Biotechnol. J., (2006), 1 (9), 930-948.

DOI: 10.1002/biot.200600058

Google Scholar

[54] T. Xu, J. Jin, C. Gregory, J.J Hickman, T. Boland, Inkjet printing of viable mammalian cells, Biomaterials, (2005), 26 (1), 93-99.

DOI: 10.1016/j.biomaterials.2004.04.011

Google Scholar

[55] T. Xu, C. Baicu, M. Aho, M. Zile, T. Boland, Fabrication and characterization of bio-engineered cardiac pseudo tissues, Biofabrication, (2009), 1 (3), 035001.

DOI: 10.1088/1758-5082/1/3/035001

Google Scholar

[56] S. Moon, S.K Hasan, Y.S Song, F. Xu, H.O Keles, F. Manzur, S. Mikkilineni, J.W Hong, J. Nagatomi, E. Haeggstrom, A. Khademhosseini, U. Demirci, Layer by layer three dimensional tissue epitaxy by cell-laden hydrogel droplets, Tissue Eng. Part C Methods, (2010), 16 (1), 157-166.

DOI: 10.1089/ten.tec.2009.0179

Google Scholar

[57] V. Mironov, R.P Visconti, V. Kasyanov, G. Forgacs, C.J Drake, R.R Markwald, Organ printing: tissue spheroids as building blocks, Biomaterials, (2009), 30 (12), 2164-2174.

DOI: 10.1016/j.biomaterials.2008.12.084

Google Scholar

[58] C.N Jones, N. Tuleuova, J. Lee, E. Ramanculov, A.H Reddi, M.A Zern, A. Revzin, Cultivating liver cells on printed arrays of hepatocyte growth factor, Biomaterials, (2009), 30 (22), 3733-3741.

DOI: 10.1016/j.biomaterials.2009.03.039

Google Scholar

[59] M. Nakamura, A. Kobayashi, F. Takagi, A. Watanabe, Y. Hiruma, K. Ohuchi, Y. Iwasaki, M. Horie, I. Morita, S. Takatani, Biocompatible inkjet printing technique for designed seeding of individual living cells, Tissue Eng., (2005), 11 (11-12), 1658-1666.

DOI: 10.1089/ten.2005.11.1658

Google Scholar

[60] C.M Smith, A.L Stone, R.L Parkhill, R.L Stewart, M.W Simpkins, A.M Kachurin, W.L Warren, S.K Williams, Three-dimensional bioassembly tool for generating viable tissue engineered constructs, Tissue Eng., (2004), 10 (9-10), 1566-1576.

DOI: 10.1089/1076327042500274

Google Scholar

[61] H.X Liu, Y.N Yan, X.H Wang, J. Cheng, F. Lin, Z. Xiong, R.D Wu, Construct hepatic analog by cell-matrix controlled assembly technology, Chinese Science Bulletin, (2006), 51 (15), 1830-1835.

DOI: 10.1007/s11434-006-2045-9

Google Scholar

[62] C.M Smith, W.L Warren, J.B Hoying, S.K Williams, Utilizing a three-dimensional bioassembly tool to fabricate spatially organized multicellular vascular constructs, Faseb Journal, (2005), 19 (4), A160-a160.

Google Scholar

[63] X.H Wang, Y.N Yan, Y.Q Pan, Z. Xiong, H.X Liu, B. Cheng, F. Liu, F. Lin, R.D Wu, R.J Zhang, Q.P Lu, Generation of three-dimensional hepatocyte/gelatin structures with rapid prototyping system, Tissue Eng., (2006), 12 (1), 83-90.

DOI: 10.1089/ten.2006.12.83

Google Scholar

[64] D.L Cohen, E. Malone, H. Lipson, L.J Bonassar, Direct freeform fabrication of seeded hydrogels in arbitrary geometries, Tissue Eng., (2006), 12 (5), 1325-1335.

DOI: 10.1089/ten.2006.12.1325

Google Scholar

[65] Y.N Yan, X.H Wang, Z. Xiong, H.X Liu, F. Liu, F. Lin, R.D Wu, R.J Zhang, Q.P Lu, Direct construction of a three-dimensional structure with cells and hydrogel, J. Bioactive Compatible Polymers, (2005), 20 (3), 259-269.

DOI: 10.1177/0883911505053658

Google Scholar

[66] Y.N Yan, X.H Wang, Y.Q Pan, H.X Liu, J. Cheng, Z. Xiong, F. Lin, R.D Wu, R.J Zhang, Q.P Lu, Fabrication of viable tissue-engineered constructs with 3D cell-assembly technique, Biomaterials, (2005), 26 (29), 5864-5871.

DOI: 10.1016/j.biomaterials.2005.02.027

Google Scholar

[67] K. Buyukhatipoglu, W. Jo, W. Sun, A.M Clyne, The role of printing parameters and scaffold biopolymer properties in the efficacy of a new hybrid nano-bioprinting system, Biofabrication, (2009), 1 (3), 035003.

DOI: 10.1088/1758-5082/1/3/035003

Google Scholar

[68] R.A Barry, R.F Shepherd, J.N Hanson, R.G Nuzzo, P. Wiltzius, J.A Lewis, Direct-Write Assembly of 3D Hydrogel Scaffolds for Guided Cell Growth, Advanced Materials, (2009), 21 (23), 2407-2410.

DOI: 10.1002/adma.200803702

Google Scholar

[69] R. Chang, Y. Nam, W. Sun, Direct cell writing of 3D microorgan for in vitro pharmacokinetic model, Tissue Eng. Part C Methods, (2008), 14 (2), 157-166.

DOI: 10.1089/ten.tec.2007.0392

Google Scholar

[70] T. Boland, X. Tao, B.J Damon, B. Manley, P. Kesari, S. Jalota, S. Bhaduri, Drop-on-demand printing of cells and materials for designer tissue constructs, Mater. Sci. Eng. C, (2007), 27 (3), 372-376.

DOI: 10.1016/j.msec.2006.05.047

Google Scholar

[71] T. Boland, V. Mironov, A. Gutowska, E.A Roth, R.R Markwald, Cell and Organ Printing 2: Fusion of cell aggregates in three-dimensional gels, Anat. Rec. A Discov. Mol Cell. Evol. Biol., (2003), 272 (2), 497-502.

DOI: 10.1002/ar.a.10059

Google Scholar

[72] S. Khalil, W. Sun, Bioprinting endothelial cells with alginate for 3D tissue constructs, J Biomech. Eng., (2009), 131 (11), 111002.

DOI: 10.1115/1.3128729

Google Scholar

[73] S.N Jayasinghe, A.N Qureshi, P.A Eagles, Electrohydrodynamic jet processing: An advanced electric-field-driven jetting phenomenon for processing living cells, Small, (2006), 2 (2), 216-219.

DOI: 10.1002/smll.200500291

Google Scholar

[74] L.A Haines-Butterick, K. Rajagopal, M. Branco, D. Salick, R. Rughani, M. Pilarz, M.S Lamm, D.J Pochan, J.P Schneider, Controlling hydrogelation kinetics by peptide design for three-dimensional encapsulation and injectable delivery of cells, PNAS USA, (2007), 104 (19), 7791-7796.

DOI: 10.1073/pnas.0701980104

Google Scholar

[75] L.A Haines-Butterick, K. Rajagopal, M. Lamm, D.J Pochan, J.P Schnieder, Controlling hydrogelation kinetics via peptide design for three-dimensional encapsulation and injectable delivery of cells, Biopolymers, (2007), 88 (4), 518-518.

DOI: 10.1073/pnas.0701980104

Google Scholar

[76] C.D Sims, P.E Butler, Y.L Cao, R. Casanova, M.A Randolph, A. Black, C.A Vacanti, M.J Yaremchuk, Tissue engineered neocartilage using plasma derived polymer substrates and chondrocytes, Plast. Reconstr. Surg., (1998), 101 (6), 1580-1585.

DOI: 10.1097/00006534-199805000-00022

Google Scholar

[77] M.G Li, X.Y Tian, X.B Chen, A brief review of dispensing-based rapid prototyping techniques in tissue scaffold fabrication: role of modeling on scaffold properties prediction, Biofabrication, (2009), 1 (3), 032001.

DOI: 10.1088/1758-5082/1/3/032001

Google Scholar

[78] V. Mironov, T. Boland, T. Trusk, G. Forgacs, R.R Markwald, Organ printing: computer-aided jet-based 3D tissue engineering, Trends Biotechnol., (2003), 21 (4), 157-161.

DOI: 10.1016/s0167-7799(03)00033-7

Google Scholar

[79] M. Xu, X. Wang, Y. Yan, R. Yao, Y. Ge, An cell-assembly derived physiological 3D model of the metabolic syndrome, based on adipose-derived stromal cells and a gelatin/alginate/fibrinogen matrix, Biomaterials, (2010), 31 (14), 3868-3877.

DOI: 10.1016/j.biomaterials.2010.01.111

Google Scholar

[80] R.C Lee, Cell injury by electric forces, Ann. N Y Acad. Sci., (2005), 1066, 85-91.

Google Scholar

[81] A. Townsend-Nicholson, S.N Jayasinghe, Cell electrospinning: a unique biotechnique for encapsulating living organisms for generating active biological microthreads/scaffolds, Biomacromolecules, (2006), 7 (12), 3364-3369.

DOI: 10.1021/bm060649h

Google Scholar

[82] E. Ward, E. Chan, K. Gustafsson, S.N Jayasinghe, Combining bio-electrospraying with gene therapy: a novel bio-technique for the delivery of genetic material via living cells, Analyst, (2010), 135 (5), 1042-1049.

DOI: 10.1039/b923307e

Google Scholar

[83] J.T Seil, T.J Webster, Spray deposition of live cells throughout the electrospinning process produces nanofibrous three-dimensional tissue scaffolds, Int J Nanomedicine, (2011), 6, 1095-1099.

DOI: 10.2147/ijn.s18803

Google Scholar

[84] D. Li, Y.N Xia, Electrospinning of nanofibers: Reinventing the wheel?, Advanced Materials, (2004), 16 (14), 1151-1170.

DOI: 10.1002/adma.200400719

Google Scholar

[85] W. Tan, T.A Desai, Layer-by-layer microfluidics for biomimetic three-dimensional structures, Biomaterials, (2004), 25 (7-8), 1355-1364.

DOI: 10.1016/j.biomaterials.2003.08.021

Google Scholar

[86] H. Andersson, A. van den Berg, Microfabrication and microfluidics for tissue engineering: state of the art and future opportunities, Lab Chip, (2004), 4 (2), 98-103.

DOI: 10.1039/b314469k

Google Scholar

[87] W.G Koh, L.J Itle, M.V Pishko, Molding of hydrogel multiphenotype cell microstructures to create microarrays, Anal. Chem., (2003), 75 (21), 5783-5789.

DOI: 10.1021/ac034773s

Google Scholar

[88] J. Su, Y.Z Zheng, H.K Wu, Generation of alginate microfibers with a roller-assisted microfluidic system, Lab Chip, (2009), 9 (7), 996-1001.

DOI: 10.1039/b813518e

Google Scholar

[89] W. Tan, T.A Desai, Microfluidic patterning of cells in extracellular matrix biopolymers: Effects of channel size, cell type, and matrix composition on pattern integrity, Tissue Eng., (2003), 9 (2), 255-267.

DOI: 10.1089/107632703764664729

Google Scholar

[90] S. Xu, Z. Nie, M. Seo, P. Lewis, E. Kumacheva, H.A Stone, P. Garstecki, D.B Weibel, I. Gitlin, G.M Whitesides, Generation of monodisperse particles by using microfluidics: Control over size, shape, and composition, Angewandte Chemie, (2005), 117 (5), 735-738.

DOI: 10.1002/ange.200462226

Google Scholar

[91] J.A Burdick, A. Khademhosseini, R. Langer, Fabrication of gradient hydrogels using a microfluidics/photopolymerization process, Langmuir, (2004), 20 (13), 5153-5156.

DOI: 10.1021/la049298n

Google Scholar

[92] D.A Bruzewicz, A.P McGuigan, G.M Whitesides, Fabrication of a modular tissue construct in a microfluidic chip, Lab Chip, (2008), 8 (5), 663-671.

DOI: 10.1039/b719806j

Google Scholar

[93] A. Vogel, V. Venugopalan, Mechanisms of pulsed laser ablation of biological tissues, Chem. Rev., (2003), 103 (2), 577-644.

DOI: 10.1021/cr010379n

Google Scholar

[94] A. Heisterkamp, I.Z Maxwell, E. Mazur, J.M Underwood, J.A Nickerson, S. Kumar, D.E Ingber, Pulse energy dependence of subcellular dissection by femtosecond laser pulses, Opt. Express, (2005), 13 (10), 3690-3696.

DOI: 10.1364/opex.13.003690

Google Scholar

[95] Y. Liu, G.J Sonek, M.W Berns, B.J Tromberg, Physiological monitoring of optically trapped cells: assessing the effects of confinement by 1064-nm laser tweezers using micro- fluorometry, Biophys. J., (1996), 71 (4), 2158-2167.

DOI: 10.1016/s0006-3495(96)79417-1

Google Scholar

[96] Y. Liu, D.K Cheng, G.J Sonek, M.W Berns, C.F Chapman, B.J Tromberg, Evidence for localized cell heating induced by infrared optical tweezers, Biophys. J., (1995), 68 (5), 2137-2144.

DOI: 10.1016/s0006-3495(95)80396-6

Google Scholar

[97] K. König, H. Liang, M.W Berns, B.J Tromberg, Cell damage by near-IR microbeams, Nature, (1995), 377 (6544), 20-21.

DOI: 10.1038/377020a0

Google Scholar

[98] M.W Berns, A possible two-photon effect in vitro using a focused laser beam, Biophys. J., (1976), 16 (8), 973-977.

DOI: 10.1016/s0006-3495(76)85747-5

Google Scholar

[99] K. König, H. Liang, M.W Berns, B.J Tromberg, Cell damage in near-infrared multimode optical traps as a result of multiphoton absorption, Opt. Lett., (1996), 21 (14), 1090-1092.

DOI: 10.1364/ol.21.001090

Google Scholar

[100] P.P Calmettes, M.W Berns, Laser-Induced Multiphoton Processes in Living Cells, PNAS USA, (1983), 80 (23), 7197-7199.

DOI: 10.1073/pnas.80.23.7197

Google Scholar

[101] K. Svoboda, S.M Block, Biological Applications of Optical Forces, Ann. Rev. Biophys. Biomol. Struct., (1994), 23, 247-285.

DOI: 10.1146/annurev.bb.23.060194.001335

Google Scholar

[102] M.B Zeigler, D.T Chiu, Laser Selection Significantly Affects Cell Viability Following Single-Cell Nanosurgery, Photochem. Photobiol., (2009), 85 (5), 1218-1224.

DOI: 10.1111/j.1751-1097.2009.00581.x

Google Scholar

[103] K.C Neuman, E.H Chadd, G.F Liou, K. Bergman, S.M Block, Characterization of photodamage to Escherichia coli in optical traps, Biophys. J., (1999), 77 (5), 2856-2863.

DOI: 10.1016/s0006-3495(99)77117-1

Google Scholar

[104] S. Catros, B. Guillotin, M. Bacakova, J.C Fricain, F. Guillemot, Effect of laser energy, substrate film thickness and bio-ink viscosity on viability of endothelial cells printed by Laser-Assisted Bioprinting, Applied Surface Science, (2011), 257 (12), 5142-5147.

DOI: 10.1016/j.apsusc.2010.11.049

Google Scholar

[105] B. Hopp, T. Smausz, N. Kresz, N. Barna, Z. Bor, L. Kolozsvari, D.B Chrisey, A. Szabo, A. Nogradi, Survival and proliferative ability of various living cell types after laser-induced forward transfer, Tissue Eng., (2005), 11 (11-12), 1817-1823.

DOI: 10.1089/ten.2005.11.1817

Google Scholar

[106] J. Kujawa, I.B Zavodnik, A. Lapshina, M. Labieniec, M. Bryszewska, Cell survival, DNA, and protein damage in B14 cells under low-intensity near-infrared (810 nm) laser irradiation, Photomed. Laser Surg., (2004), 22 (6), 504-508.

DOI: 10.1089/pho.2004.22.504

Google Scholar

[107] A.G Doukas, D.J McAuliffe, T.J Flotte, Biological effects of laser-induced shock waves: structural and functional cell damage in vitro, Ultrasound Med. Biol., (1993), 19 (2), 137-146.

DOI: 10.1016/0301-5629(93)90006-a

Google Scholar

[108] R. Lubart, Y. Wollman, H. Friedmann, S. Rochkind, I. Laulicht, Effects of visible and near-infrared lasers on cell cultures, J Photochem. Photobiol. B, (1992), 12 (3), 305-310.

DOI: 10.1016/1011-1344(92)85032-p

Google Scholar

[109] Y.F Lin, G.H Huang, Y. Huang, T.R Tzeng, D. Chrisey, Effect of laser fluence in laser-assisted direct writing of human colon cancer cell, Rapid Prototyping J., (2010), 16 (3), 202-208.

DOI: 10.1108/13552541011034870

Google Scholar

[110] U. Zimmermann, Electric field-mediated fusion and related electrical phenomena, Biochim. Biophys. Acta., (1982), 694 (3), 227-77.

Google Scholar

[111] E.A Evans, R. Skalak, R.M Hochmuth, Mechanics and Thermodynamics of Biomembranes: Part 1, CRC Crit. Rev. Bioeng., (1979), 3 (3), 181-330.

Google Scholar

[112] E.A Evans, R. Skalak, Mechanics and Thermodynamics of Biomembranes: Part 2, CRC Crit. Rev. Bioeng., (1979), 3 (4), 331-418.

Google Scholar

[113] D.A Fletcher, D. Mullins, Cell mechanics and the cytoskeleton, Nature, (2101), 463 (7280), 485-492.

DOI: 10.1038/nature08908

Google Scholar

[114] P.A Janmey, C.A McCulloch, Cell mechanics: Integrating cell responses to mechanical stimuli, Ann. Rev. Biomed. Eng., (2007), 9, 1-34.

DOI: 10.1146/annurev.bioeng.9.060906.151927

Google Scholar

[115] T.W Secomb, Red-Blood-Cell Mechanics and Capillary Blood Rheology, Cell Biophys., (1991), 18 (3), 231-251.

DOI: 10.1007/bf02989816

Google Scholar

[116] S.P Sutera, M.H Mehrjardi, Deformation and Fragmentation of Human Red Blood-Cells in Turbulent Shear-Flow, Biophys. J., (1975), 15 (1), 1-10.

DOI: 10.1016/s0006-3495(75)85787-0

Google Scholar

[117] R. Chang, W. Sun, Effects of dispensing pressure and nozzle diameter on cell survival from solid freeform fabrication-based direct cell writing, Tissue Eng. Part A, (2008), 14 (1), 41-48.

DOI: 10.1089/ten.a.2007.0004

Google Scholar

[118] T. Braschler, R. Johann, M. Heule, L. Metref, P. Renaud, Gentle cell trapping and release on a microfluidic chip by in situ alginate hydrogel formation, Lab Chip, (2005), 5 (5), 553-559.

DOI: 10.1039/b417604a

Google Scholar

[119] P.L Blackshear Jr, F.D Dorman, J.H Steinbach, Some mechanical effects that influence hemolysis, Trans. Am. Soc. Artif. Inter. Organs, (1965), 11, 112-7.

DOI: 10.1097/00002480-196504000-00022

Google Scholar

[120] M. Giersiepen, L. Wurzinger, R. Opitz, H. Reul, Estimation of shear stress-related blood damage in heart valve prostheses-in vitro comparison of 25 aortic valves, Int. J. Artif. Organs, (1990), 13 (5), 300-6.

DOI: 10.1177/039139889001300507

Google Scholar

[121] R. Paul, J. Apel, S. Klaus, F. Schügner, P. Schwindke, H. Reul, Shear stress related blood damage in laminar couette flow, Artif. Organs, (2003), 27 (6), 517-529.

DOI: 10.1046/j.1525-1594.2003.07103.x

Google Scholar

[122] B. Vickroy, K. Lorenz and W. Kelly, Modeling Shear Damage to Suspended CHO Cells during Cross Flow Filtration, Biotechnol. Prog., (2007), 23 (1), 194-199.

DOI: 10.1021/bp060183e

Google Scholar

[123] L. Leverett, J. Hellums, C. Alfrey, E. Lynch, Red blood cell damage by shear stress, Biophys. J., (1972), 12 (3), 257-273.

DOI: 10.1016/s0006-3495(72)86085-5

Google Scholar

[124] K.C Yan, K. Nair, W. Sun, Three dimensional multi-scale modelling and analysis of cell damage in cell-encapsulated alginate constructs, J. Biomech., (2010), 43 (6), 1031-1038.

DOI: 10.1016/j.jbiomech.2009.12.018

Google Scholar

[125] F. Dunn, Cellular Inactivation by Heat and Shear, Radiat. Environ. Biophys., (1985), 24 (2), 131-139.

DOI: 10.1007/bf01229819

Google Scholar

[126] M. Li, X. Tian, X. Chen, Temperature effect on the shear-induced cell damage in biofabrication, Artif. Organs, (2011), 35 (7), 741.

DOI: 10.1111/j.1525-1594.2010.01193.x

Google Scholar

[127] G.H Kim, J.G Son, S.A Park, W.D Kim, Hybrid Process for Fabricating 3D Hierarchical Scaffolds Combining Rapid Prototyping and Electrospinning, Macromolecular Rapid Comm., (2008), 29 (19), 1577-1581.

DOI: 10.1002/marc.200800277

Google Scholar

[128] M. Hu, R. Deng, K.M Schumacher, M. Kurisawa, H. Ye, K. Purnamawati, J.Y Ying, Hydrodynamic spinning of hydrogel fibers, Biomaterials, (2010), 31 (5), 863-869.

DOI: 10.1016/j.biomaterials.2009.10.002

Google Scholar

[129] L. Moroni, J.A Hendriks, R. Schotel, J.R De Wijn, C.A Van Blitterswijk, Design of biphasic polymeric 3-dimensional fiber deposited scaffolds for cartilage tissue engineering applications, Tissue Eng., (2007), 13 (2), 361-371.

DOI: 10.1089/ten.2006.0127

Google Scholar

[130] D. Dendukuri, P.S Doyle, The Synthesis and Assembly of Polymeric Microparticles Using Microfluidics, Adv. Mater., (2009), 21 (41), 4071-4086.

DOI: 10.1002/adma.200803386

Google Scholar

[131] K.A Barbee, T. Mundel, R. Lal, P.F Davies, Subcellular distribution of shear stress at the surface of flow-aligned and nonaligned endothelial monolayer, Am. J. Physiol., (1995), 268 (4 pt 2), H1765-72.

DOI: 10.1152/ajpheart.1995.268.4.h1765

Google Scholar

[132] R.L Satcher Jr., S.R Bussolari, M.A Gimbrone Jr., C.F Dewey Jr., The distribution of fluid forces on model arterial endothelium using computational fluid dynamics, J. Biomech. Eng., (1992), 114 (3), 309-316.

DOI: 10.1115/1.2891388

Google Scholar

[133] A.I Barakat, P.F Davies, Mechanisms of shear stress transmission and transduction in endothelial cells, Chest, (1998), 114 (1 Suppl), 58S-63S.

DOI: 10.1378/chest.114.1_supplement.58s

Google Scholar

[134] C.S Peskin, The immersed boundary method, Acta Numerica, (2002), 11 (1), 479-517.

DOI: 10.1017/s0962492902000077

Google Scholar

[135] S. Jadhav, C.D Eggleton, K. Konstantopoulos, A 3-D computational model predicts that cell deformation affects selectin-mediated leukocyte rolling, Biophys. J., (2005), 88 (1), 96-104.

DOI: 10.1529/biophysj.104.051029

Google Scholar

[136] D.C Bottino, Modeling viscoelastic networks and cell deforamation in the context of the immersed boundary method, J. Comput. Phys., (1998), 147 (1), 86-113.

DOI: 10.1006/jcph.1998.6074

Google Scholar

[137] C.D Eggleton, A.S Popel, Large deformation of red blood cell ghosts in a simple shear flow, Physics of Fluids, (1998), 10 (8), 1834-45.

DOI: 10.1063/1.869703

Google Scholar