Chemical Activation of Garcinia mangostana Mangosteen Shell with Acid-Base for Hexavalent Chromium Adsorption

Article Preview

Abstract:

This study investigates the potential for using mangosteen shell which is an agricultural waste to chemically activate using potassium hydroxide (KOH) or phosphoric acid (H3PO4) and then carbonized for 120 min at 673 K, to adsorb hexavalent chromium (Cr6+) from solution. The high iodine number and methylene blue number on the base-activation as a good adsorbent that a high surface area of this activated carbonaceous material is effective in removing Cr6+, with adsorption increasing with temperature, adsorption time, and initial feed concentration. With decreasing solution pH, the maximum of Cr6+ adsorption capacity and removal at a pH of 2.0 was achieved.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

99-104

Citation:

Online since:

June 2021

Export:

Price:

* - Corresponding Author

[1] A. Ihsanullah, A. M. Abbas, T. Al-Amer, M. J. Laoui, M.S. Al-Marri, M. Nasser, Khraisheh and M.A. Atieh, Heavy metal removal from aqueous solution by advanced carbon nanotubes: Critical review of adsorption applications, Sep. Purif. Technol. 157 (2016) 141–161.

DOI: 10.1016/j.seppur.2015.11.039

Google Scholar

[2] P. Miretzky and A. F. Cirelli, Cr (VI) and Cr (III) removal from aqueous solution by raw and modified lignocellulosic materials: A review, J. Hazad. Mater.180 (2010) 1-19.

DOI: 10.1016/j.jhazmat.2010.04.060

Google Scholar

[3] Information on https://www.epa.gov/.

Google Scholar

[4] F. Fu and Q. Wang, Removal of heavy metal ions from wastewaters: A review, J. Environ. Manage. 92 (2011) 407-418.

Google Scholar

[5] T. Z. Sadyrbaev, Removal of chromium (VI) from aqueous solutions using a novel hybrid liquid membrane-electrodialysis process, Chem. Eng. Process. 99 (2016) 183–191.

DOI: 10.1016/j.cep.2015.07.011

Google Scholar

[6] K.J. Cronje, K. Chetty, M. Carsky, J.N. Sahu and B.C. Meikap, Optimization of chromium(VI) sorption potential using developed activated carbon from sugarcane bagasse with chemical activation by zinc chloride, Desalination, 275 (2011) 276–284.

DOI: 10.1016/j.desal.2011.03.019

Google Scholar

[7] Z. A. AL-Othman, R. Ali and M. Naushad, Hexavalent chromium removal from aqueous medium by activated carbon prepared from peanut shell: adsorption kinetics, equilibrium and thermodynamic studies", Chem. Eng. J. 184 (2012) 238-247.

DOI: 10.1016/j.cej.2012.01.048

Google Scholar

[8] C. Jung, J. Heo, J. Han, N. Her, S. Lee, J. Oh, J. Ryu and Y. Yoon, Hexavalent chromium removal by various adsorbents: Powdered activated carbon, chitosan, and single/multi-walled carbon nanotubes, Sep. Purif. Technol. 106 (2013) 63–71.

DOI: 10.1016/j.seppur.2012.12.028

Google Scholar

[9] V. Lavanya, S. Arunthathi and N. S. Elangovan, Removal of chromium from groundwater using neem leaves as adsorbent", Int. J. Environ. Res. 9 (2015) 439-444.

Google Scholar

[10] J. Yang, M. Yu and W. Chen, Adsorption of hexavalent chromium from aqueous solution by activated carbon prepared from longan seed: Kinetics, equilibrium and thermodynamics, J. Ind. Eng. Chem. 21(2015) 414–422.

DOI: 10.1016/j.jiec.2014.02.054

Google Scholar

[11] S. Kuppusamy, P. Thavamani, M. Megharaj, K. Venkateswarlu, Y.B. Lee and R. Naidu, Oak (Quercusrobur) acorn peel as a low-cost adsorbent for hexavalent chromium removal from aquatic ecosystems and industrial effluents, Water Air Soil Pollut. 227 (2016) 62.

DOI: 10.1007/s11270-016-2760-z

Google Scholar

[12] R. Gottipati and S. Mishra, Preparation of microporous activated carbon from Aegle Marmelos fruit shell and its application in removal of chromium(VI) from aqueous phase, J. Ind. Eng. Chem.36 (2016) 355–363.

DOI: 10.1016/j.jiec.2016.03.005

Google Scholar

[13] A. Ali, K. Saeed and F. l. Mabood, Removal of chromium (VI) from aqueous medium using chemically modified banana peels as efficient low-cost adsorbent, AEJ. 55 (2016) 2933-2942.

DOI: 10.1016/j.aej.2016.05.011

Google Scholar

[14] R. Bhatt, B. Sreedhar and P. Padmaja, Adsorption of chromium from aqueous solutions using crosslinked chitosan-diethylenetriaminepentaacetic acid, Int. J. Biol. Macromol. 74(2015) 458-466.

DOI: 10.1016/j.ijbiomac.2014.12.041

Google Scholar

[15] L. Li, Y. Lia, L. Caoa and C. Yanga, Enhanced chromium (VI) adsorption using nanosized chitosan fibers tailored by electrospinning, Carbohydr. Polym. 125 (2015) 206–213.

DOI: 10.1016/j.carbpol.2015.02.037

Google Scholar

[16] A. Bhatnagar, M. Sillanpää, A. Witek-Krowiak, Agricultural waste peels as versatile biomass for water purification – A review, Chem. Eng. J. 270 (2015) 244–271.

DOI: 10.1016/j.cej.2015.01.135

Google Scholar

[17] L. A. M. Ruotolo, D. S. Santos-Júnior and J. C. Gubulin, Electrochemical treatment of effluents containing Cr (VI). Influence of pH and current on the kinetic, Water. Res. 40 (2006) 1555-1560.

DOI: 10.1016/j.watres.2006.02.005

Google Scholar

[18] K. Li, P. Li, J. Cai, S. Xiao, H. Yang and A. Li, Efficient adsorption of both methyl orange and chromium from their aqueous mixtures using a quaternary ammonium salt modified chitosan magnetic composite adsorbent, Chemosphere.154 (2016) 310-318.

DOI: 10.1016/j.chemosphere.2016.03.100

Google Scholar

[19] F. D. Natale, A. Erto, A. Lancia, D. Musmarra, Equilibrium and dynamic study on hexavalent chromium adsorption onto activated carbon, J. Hazad. Mater. 281(2015) 47-55.

DOI: 10.1016/j.jhazmat.2014.07.072

Google Scholar

[20] N. H. Mthombeni, M. S. Onyango and O. Aoyi, Adsorption of hexavalent chromium onto magnetic natural zeolite-polymer composite, J. Taiwan Inst. Chem.50 (2015) 242–251.

DOI: 10.1016/j.jtice.2014.12.037

Google Scholar

[21] A.A. Attia, S.A. Khedr, and S.A. Elkholy, Adsorption of chromium ion (VI) by acid activated carbon, Braz. J. Chem. Eng. 27 (2010) 183-193.

DOI: 10.1590/s0104-66322010000100016

Google Scholar