Complex Cell Physiology on Topographically and Chemically Designed Material Surfaces

Article Preview

Abstract:

A crucial factor for ingrowth of permanent implants in the bone is the rapid cellular acceptance. The topographical features often follow mechanical aspects for implant stability. But several of these implants fail due to insufficient cell adhesion. Cells are able to perceive the physico-chemical properties of their surrounding and to pass these signals into the cell to modulate their adhesion structures, growth or production of extracellular matrix. However, the complex cell physiology at the material interface is not yet fully understood, particular on stochastically structured topographies resulting from industrial production. We could find out that corundum blasted titanium hampered the organization of actin filaments inside the cells, clustered adhesion components, e. g. beta-1 integrins and tensin, and the cells bridged the valleys which reduces cell-substrate contacts. These morphological changes strongly diminished the mineralization of osteoblasts. To shed light on cause and effect we reduced the physical complexity of the material surface by introduction of regular micro-structures (pillars, grooves) using deep reactive ion etching. Now it was more obvious what cells are doing on sharp edged topographies ‒ the actin filaments of our cells were clustered around the pillars. As a result the intracellular calcium signaling and the protein synthesis were impaired. Our recent findings indicated an attempted phagocytosis of the micro-pillars by osteoblasts. Therefore we conclude that implants used in orthopedic surgery should avoid any sharp-edged topographical features that could induce phagocytosis by the surrounding cells, which is an unnecessarily energy consuming process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

78-83

Citation:

Online since:

November 2016

Export:

Price:

* - Corresponding Author

[1] C. Matschegewski, S. Staehlke, R. Loeffler, R. Lange, F. Chai, D. Kern, U. Beck, J.B. Nebe, Cell architecture‒cell function dependencies on titanium arrays with regular geometry, Biomaterials 31 (2010).

DOI: 10.1016/j.biomaterials.2010.03.073

Google Scholar

[2] J.B. Nebe, B. Finke, A. Körtge, H. Rebl, S. Stählke, Geometrical micropillars combined with chemical surface modifications – Independency of actin filament spatial distribution in primary osteoblasts, Mater. Sci. Forum Vols. 783-786 (2014).

DOI: 10.4028/www.scientific.net/msf.783-786.1320

Google Scholar

[3] J. Rychly, B. Nebe, Cell-material interaction, BioNanoMat. 14 (2013) 153-160.

Google Scholar

[4] B. Finke, F. Luethen, K. Schroeder, P. Mueller, C. Bergemann, M. Frant, A. Ohl, J.B. Nebe, The effect of positively charged plasma polymerization on initial osteoblastic focal adhesion on titanium surfaces, Biomaterials 28/30 (2007).

DOI: 10.1016/j.biomaterials.2007.06.028

Google Scholar

[5] B. Nebe, F. Lüthen, B. Finke, C. Bergemann, K. Schröder, J. Rychly, K. Liefeith, A. Ohl, Improved initial osteoblast's functions on amino-functionalized titanium surfaces, Biomol. Eng. 24 (2007) 447-454.

DOI: 10.1016/j.bioeng.2007.07.004

Google Scholar

[6] H. Rebl, B. Finke, R. Lange, K. -D. Weltmann, B. Nebe, Impact of plasma chemistry versus titanium surface topography on osteoblast orientation, Acta Biomater. 8 (2012) 3840-3851. doi: 10. 1016/j. actbio. 2012. 06. 015.

DOI: 10.1016/j.actbio.2012.06.015

Google Scholar

[7] C. Matschegewski, S. Staehlke, H. Birkholz, R. Lange, U. Beck, K. Engel, J.B. Nebe, Automatic actin filament quantification of osteoblasts and their morphometric analysis on microtextured silicon-titanium arrays, Materials 5 (2012).

DOI: 10.3390/ma5071176

Google Scholar

[8] F. Lüthen, R. Lange, P. Becker, J. Rychly, U. Beck, J.B. Nebe, The influence of surface roughness of titanium on beta1- and beta3-integrin adhesion and the organization of fibronectin in human osteoblastic cells, Biomaterials 26 (2005).

DOI: 10.1016/j.biomaterials.2004.07.054

Google Scholar

[9] B. Nebe, F. Lüthen, R. Lange, U. Beck, Interface interactions of osteoblasts with structured titanium surfaces and their mathematical correlation, Macromol. Biosci. 7 (2007) 567-578.

DOI: 10.1002/mabi.200600293

Google Scholar

[10] B. Nebe, F. Lüthen, R. Lange, P. Becker, U. Beck, J. Rychly, Topography-induced alterations in adhesion structures affect mineralization in human osteoblasts on titanium, Mater. Sci. Engin. C 24 (2004) 619-624.

DOI: 10.1016/j.msec.2004.08.034

Google Scholar

[11] J.B. Nebe, F. Lüthen, J. Rychly, Topology-dependent cellular interactions – Cell structure-cell function dependence on titanium surfaces. In: Metallic Biomaterial Interactions, Eds.: J. Breme, C.J. Kirkpatrick, R. Thull, WILEY-VCH, ISBN 978-3-527-31860-5, 2008, pp.215-222.

Google Scholar

[12] S. Staehlke, A. Koertge, B. Nebe, Intracellular calcium dynamics dependent on defined microtopographical features of titanium, Biomaterials 46 (2015) 48-57. doi: 10. 1016/j. biomaterials. 2014. 12. 016.

DOI: 10.1016/j.biomaterials.2014.12.016

Google Scholar

[13] M.D. Bootman, M.J. Berridge, H.L. Roderick, Calcium signalling: more messengers, more channels, more complexity, Curr. Biol. 12 (2002) 563e5.

DOI: 10.1016/s0960-9822(02)01055-2

Google Scholar

[14] M.J. Berridge, M.D. Bootman, H.L. Roderick, Calcium signalling: dynamics, homeostasis and remodeling, Nat. Rev. Mol. Cell Biol. 5 (2003) 517e29.

DOI: 10.1038/nrm1155

Google Scholar

[15] C. Mörke, P. Müller, B. Nebe, Attempted caveolae-mediated phagocytosis of surface-fixed micro-pillars by human osteoblasts, Biomaterials 76 (2016) 102-114. doi: 10. 1016/j. biomaterials. 2015. 10. 030.

DOI: 10.1016/j.biomaterials.2015.10.030

Google Scholar