A Comprehensive Analysis of AISI 316L Samples Printed via FDM: Structural and Mechanical Characterization

Article Preview

Abstract:

Metal Fused Deposition Modelling is a promising multi-step process able to manufacture metal parts by means of a low-cost additive technique. In this study, a metal-polymer composite filament characterized by homogenous mixture of AISI 316L sinterable metal powders and a multi-component polymeric matrix was used to fabricate samples by means of a FDM printer. A 24 full factorial design of experiments was elaborated to define the possible influence of the relevant printing parameters on dimensional shrinkage, bulk density and overall porosity of printed samples. In addition, the mechanical properties of printed AISI 316L samples were investigated by performing tensile tests, compression tests, Charpy impact tests, Rockwell B and Vickers hardness tests. An X-ray diffraction analysis was conducted to assess the crystallographic structure of the FDM AISI 316L samples.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

46-55

Citation:

Online since:

July 2022

Export:

* - Corresponding Author

[1] ISO/ASTM 52900:2017, ASTM Int. (2017).

DOI: 10.31030/2631641

Google Scholar

[2] S. Hwang, E.I. Reyes, K. sik Moon, R.C. Rumpf, N.S. Kim, Thermo-mechanical Characterization of Metal/Polymer Composite Filaments and Printing Parameter Study for Fused Deposition Modeling in the 3D Printing Process, J. Electron. Mater. 44 (2015) 771–777.

DOI: 10.1007/s11664-014-3425-6

Google Scholar

[3] M.A. Ryder, D.A. Lados, G.S. Iannacchione, A.M. Peterson, Fabrication and properties of novel polymer-metal composites using fused deposition modeling, Compos. Sci. Technol. 158 (2018) 43–50.

DOI: 10.1016/j.compscitech.2018.01.049

Google Scholar

[4] J. Gonzalez-Gutierrez, D. Godec, C. Kukla, T. Schlauf, C. Burkhardt, C. Holzer, Shaping , Debinding and Sintering of Steel Components Via Fused Filament Fabrication, 16th Int. Sci. Conf. Prod. Eng. - CIM2017. (2017).

Google Scholar

[5] J. Gonzalez-Gutierrez, S. Cano, S. Schuschnigg, C. Kukla, J. Sapkota, C. Holzer, Additive manufacturing of metallic and ceramic components by the material extrusion of highly-filled polymers: A review and future perspectives, Materials (Basel). 11 (2018).

DOI: 10.3390/ma11050840

Google Scholar

[6] B. Liu, Y. Wang, Z. Lin, T. Zhang, Creating metal parts by Fused Deposition Modeling and Sintering, Mater. Lett. 263 (2020) 127252.

DOI: 10.1016/j.matlet.2019.127252

Google Scholar

[7] T. Kurose, Y. Abe, M.V.A. Santos, Y. Kanaya, A. Ishigami, S. Tanaka, H. Ito, Influence of the Layer Directions on the Properties of 316L Stainless Steel Parts Fabricated through Fused Deposition of Metals, (2020).

DOI: 10.3390/ma13112493

Google Scholar

[8] H. Gong, D. Snelling, K. Kardel, A. Carrano, Comparison of Stainless Steel 316L Parts Made by FDM- and SLM-Based Additive Manufacturing Processes, Jom. 71 (2019) 880–885.

DOI: 10.1007/s11837-018-3207-3

Google Scholar

[9] ASTM F3122-14, ASTM Int. 10.04 (2014) 6.

Google Scholar

[10] ISO 6892-1:2020, Int. Stand. (2020).

Google Scholar

[11] ASTM E9:2019 - Standard Test Methods of Compression Testing of Metallic Materials at Room Temperature, ASTM Int. 03.01 (2019).

Google Scholar

[12] ISO 148 - 1:2016 - Metallic materials - Charpy pendulum impact test, Int. Stand. (2016).

Google Scholar

[13] ISO 6508-1:2016 - Metallic materials - Rockwell hardness test Test method, Int. Stand. (2016).

Google Scholar

[14] ISO 6507-1:2018 - Metallic materials - Vickers hardness test Test method, Int. Stand. (2018).

Google Scholar

[15] M. Dadfar, M.H. Fathi, F. Karimzadeh, M.R. Dadfar, A. Saatchi, Effect of TIG welding on corrosion behavior of 316L stainless steel, Mater. Lett. 61 (2007) 2343–2346.

DOI: 10.1016/j.matlet.2006.09.008

Google Scholar

[16] M. Ziętala, T. Durejko, M. Polański, I. Kunce, T. Płociński, W. Zieliński, M. Łazińska, W. Stępniowski, T. Czujko, K.J. Kurzydłowski, Z. Bojar, The microstructure, mechanical properties and corrosion resistance of 316 L stainless steel fabricated using laser engineered net shaping, Mater. Sci. Eng. A. 677 (2016) 1–10.

DOI: 10.1016/j.msea.2016.09.028

Google Scholar