Phosphate Solubilizing Rhizospherebacterial T21 Isolated from Dongxiang Wild Rice Species Promotes Cultivated Rice Growth

Article Preview

Abstract:

The capability of bacterial strain T21 isolated from Dongxiang wild rice (Oryza rufipogon) rhizosphere to behave as plant growth promoting bacteria (PGPB) was investigated. Rhizosphere bacteria T21 showed P-solubilizing capability when cultured in the PVK medium amended with tricalcium phosphate. The strain T21 also showed nitrogen-fixing activity in N-free medium, and produced indole-3-acetic (IAA) and siderophore. The strain T21 was identified as Pantoea agglomerans by morphology, physiological and biochemical properties, and 16S rDNA sequence analysis. The strain T21 was formulated as an inoculant in order to evaluate its growth promotion effect in the field when applied on the cultivated rice at the sowing time. It showed a significant plant growth-promoting effect on seedling length, root length, fresh weight and dry weight of the cultivated rice (Oryza sativa). These findings fetched us to conclude that wild rice rhizospheric microorganism Pantoea agglomerans T21 could stimulate the growth of cultivated rice in vivo in poor soil.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

167-175

Citation:

Online since:

October 2011

Export:

Price:

[1] AE. Richardson Soil microorganisms and phosphorus availability., In: Pankhurst CE, Doube BM, Grupta VVSR, Grace PR, editors. Soil Biota, Management in Sustainable Farming Systems. Melbourne, Australia: CSIRO, 1994, p.50–62.

Google Scholar

[2] KB. Dey Phosphate solubilizing organisms in improving fertility status., In: Sen SP, Palit P, editors. Biofertilizers: Potentialities and Problems. Calcutta: Plant Physiology Forum, Naya Prokash, 1988. p.237–48.

Google Scholar

[3] M. Chaiharn, S. Lumyong Screening and Optimization of Indole-3-Acetic Acid Production and Phosphate Solubilization from Rhizobacteria Aimed at Improving Plant Growth., Curr Microbiol (2010).

DOI: 10.1007/s00284-010-9674-6

Google Scholar

[4] VJ, Pidiyar K, Jangid Patole MS, Shouche YS Studies on cultured and uncultured RNA gene analysis., Am J Trop Med Hyg vol. 70, 2004, p.597–603.

DOI: 10.4269/ajtmh.2004.70.597

Google Scholar

[5] AH. Goldstein Bacterial solubilization of mineral phosphates: historical perspective and future prospects., Am J Altern Agri vol. 1, 1986, p.51–57.

DOI: 10.1017/s0889189300000886

Google Scholar

[6] K.F. Yeung, K.M. Lee, and R.W. Woodard, Isolation and identification of two l-azetidine-2-carboxylic aciddegrading soil microorganisms, Enterobacter agglomerans and Enterobacter amnigenus., J Nat Prod vol. 61, 1998, p.207–211.

DOI: 10.1021/np970324+

Google Scholar

[7] W.L. De Araujo, W.J. Maccheroni, C.I. Aguilar-Vildoso, P.A. Barroso, H.O. Saridakis and J.L. Azevedo, Variability and interactions between endophytic bacteria and fungi isolated from leaf tissues of citrus rootstocks., Can J Microbiol vol. 47, 2001, p.229.

DOI: 10.1139/w00-146

Google Scholar

[8] S.C. Verma, , J.K. Ladha, and A.K. Tripathi, Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep-water rice., J Biotechnol vol. 91, 2001, p.127–141.

DOI: 10.1016/s0168-1656(01)00333-9

Google Scholar

[9] A.M.N. Omar, P. Weinhard and J. Balandreau, Using the spermosphere model technique to describe the dominant nitrogen-fixing microflora associated with wetland rice in two Egypt soils., Biol Fertil Soils vol. 7, 1989, p.158–163.

DOI: 10.1007/bf00292575

Google Scholar

[10] M.A. Mosso, M.C. De la Rosa, C. Vivar and M.R. Medina, Heterotrophic bacterial populations in the mineral waters of thermal springs in Spain., J Appl Bacteriol, vol. 77, 1994, p.370–381.

DOI: 10.1111/j.1365-2672.1994.tb03437.x

Google Scholar

[11] M. Elvira-Recuenco and J.W. van Vuurde Natural incidence of endophytic bacteria in pea cultivars under field conditions., Can J Microbiol, vol. 46, 2000, p.1036–1041.

DOI: 10.1139/w00-098

Google Scholar

[12] R.J. Dillon, C.T. Vennard and A.K. Charnley Exploitation of gut bacteria in the locust., Nature, vol. 403, 2001, pp.851-854.

DOI: 10.1038/35002669

Google Scholar

[13] C. De Champs, S. Le Seaux, J.J. Dubost, S. Boisgard, B. Sauvezie and J. Sirot, Isolation of Pantoea agglomerans in two cases of septic monoarthritis after plant thorn and wood sliver injuries., J Clin Microbiol, vol. 38, 2000, p.460–461.

DOI: 10.1128/jcm.38.1.460-461.2000

Google Scholar

[14] K. Swapan Datta (2004) Rice Biotechnology: A Need for Developing Countries, AgBioForum, ©2004 7(1&2), pp.31-35.

Google Scholar

[15] K. Hoshikawa, The growing rice plant: an anatomical monograph., Nobunkyo Press, 1989. Tokyo, Japan.

Google Scholar

[16] Y. I. Sato, Ecological-genetic studies on wild and cultivated rice in tropical Asia., Tropics, vol. 3 1994, p.189–245.

DOI: 10.3759/tropics.3.217

Google Scholar

[17] D. S. Brar and G. S. Khush, Transferring genes from wild speciesinto rice., In Quantitative Genetics, Genomics and Plant Breeding(ed. Kang, M. S. ), CAB International, 2002, p.199–217.

DOI: 10.1079/9780851996011.0197

Google Scholar

[18] M. Engelhand, T. Hurek, and B. Reinhold-Hurek. Preferential occurrence of diazotrophic endophytes, Azoarcus spp., in wild rice species and land races of Oryza sativa in comparison with modern races., Environ. Microbiol, vol. 2, 2000, p.131–141.

DOI: 10.1046/j.1462-2920.2000.00078.x

Google Scholar

[19] R. I. Pikovskaya, Mobilization of phosphorus in soil in connection with the vital activity of some microbial species., Mikrobiologiya, vol. 17, 1948, pp.362-370.

Google Scholar

[20] JM Bric, RM Bostock, SE Silverstone Rapid in situ assay for indole acetic acid production by bacteria immobilized on nitrocellulose membrane., Appl Environ Microbiol, vol. 57, 1991, p.535–538.

DOI: 10.1128/aem.57.2.535-538.1991

Google Scholar

[21] A. Elbeltagy, K. Nishioka, T. Sato, H. Suzuki, B. Ye, T. Hamada, T. Isawa, H. Mitsui et al. Endophytic colonization and in planta nitrogen fixation by a Herbaspirillum sp. isolated from wild rice species. , Appl Environ Microbiol, vol. 67, 2001, p.5285.

DOI: 10.1128/aem.67.11.5285-5293.2001

Google Scholar

[22] J. Do¨bereiner, J.M. Day and P.J. Dart, Nitrogenase activity and oxygen sensitivity of the Paspalum notatum – Azotobacter paspali association., J Gen Microbiol, vol. 71, 1972, p.103–116.

DOI: 10.1099/00221287-71-1-103

Google Scholar

[23] B. Schwyn, J.B. Neilands, Universal chemical assay for the detection and determination of siderophores., Anal. Biochem, vol. 160, 1987, p.47–56.

DOI: 10.1016/0003-2697(87)90612-9

Google Scholar

[24] W. J. Li, P. Xu, P. Schumann, Y. Q. Zhang, R. Pukall, L. H. Xu, E. Stackebrandt, & C. L Jiang,. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia., Int J Syst Evol Microbiol, vol. 57, 2007, p.1424.

DOI: 10.1099/ijs.0.64749-0

Google Scholar

[25] S. Kumar, K. Tamura & M. Nei, MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment., Brief Bioinform, vol. 5, 2004, p.150–163.

DOI: 10.1093/bib/5.2.150

Google Scholar

[26] J. D. Thompson, T. J. Gibson, F. Plewniak, F. Jeanmougin & D. G. Higgins, The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools., Nucleic Acids Res, vol. 25, 1997, p.4876–4882.

DOI: 10.1093/nar/25.24.4876

Google Scholar

[27] N. Saitou & M. Nei, The neighbor-joining method: a new method for reconstructing phylogenetic trees., Mol Biol Evol, vol. 4, 1987, p.406–425.

Google Scholar

[28] A. G. Kluge & F. S. Farris, Quantitative phyletics and the evolution of anurans., Syst Zool, vol. 18, 1969, p.1–32.

DOI: 10.1093/sysbio/18.1.1

Google Scholar

[29] GCM Latch, MJ Christensen Artificial infection of grasses with endophytes., Ann Appl Biol, vol. 107, 1985, p.17–24.

Google Scholar

[30] S.A. Ansari, P. Kumar, B.N. Gupta,. Root surface area measurement based on adsorption and desorption of nitrite., Plant and Soil, vol. 175, 1995, p.133–137.

DOI: 10.1007/bf02413018

Google Scholar

[31] M. Shoebitz, M. Ribaudo, A. Martı'n Pardo et al. Plant growth promoting properties of a strain of Enterobacter ludwigii isolated from Lolium perenne rhizosphere., Soil Biology and Biochemistry, vol. 41, 2009, p.1768–1774.

DOI: 10.1016/j.soilbio.2007.12.031

Google Scholar

[32] B. Susana Rosas, A. Germa'n, C. Evelin et al. Root colonization and growth promotion of wheat and maize by Pseudomonas aurantiaca SR1., Soil Biology & Biochemistry, vol. 41, 2009, p.1802–1806.

DOI: 10.1016/j.soilbio.2008.10.009

Google Scholar

[33] V. Kumar, N. Narula 1999 Solubilization of inorganic phosphates and growth emergence of wheat as affected by Azotobacter chroococcum mutants. , Biol Fertil Soils, vol. 28, 1999, p.301–305.

DOI: 10.1007/s003740050497

Google Scholar

[34] Y. Wang, Q. Zeng, Z. Zhang et al. Antagonistic bioactivity of an endophytic bacterium H-6, African Journal of Biotechnology, vol. 9(37), 2010, pp.6140-6145.

Google Scholar

[35] Y. Feng, D. Shen and W. Song Rice endophyte Pantoea agglomerans YS19 promotes host plant growth and affects allocations of host photosynthates., Journal of Applied Microbiology, vol. 100, 2006, p.938–945.

DOI: 10.1111/j.1365-2672.2006.02843.x

Google Scholar

[36] X. Zhang, S. Zhou, Y. Fu et al. Identification of a drought tolerant introgression line derived from Dongxiang common wild rice (O. rufipogon Griff. ), Plant Mol Biol, vol. 62, 2006, p.247–259.

DOI: 10.1007/s11103-006-9018-x

Google Scholar

[37] S. D. Tanksley, Mapping polygenes,. Annu. Rev. Genet. vol. 27, 1993, p.205–233.

DOI: 10.1146/annurev.ge.27.120193.001225

Google Scholar

[38] C.W. Stuber, Mapping and manipulating quantitative traits in maize., Trends Genet, vol. 11, 1995, p.477–481.

DOI: 10.1016/s0168-9525(00)89156-8

Google Scholar

[39] A. Elbeltagy, K. Nishioka, T. Sato et al. Endophytic Colonization and In Planta Nitrogen Fixation by a Herbaspirillum sp. Isolated from Wild Rice Species., APPLIED AND ENVIRONMENTAL MICROBIOLOGY, vol. 67(11), 2001 , p.5285–5293.

DOI: 10.1128/aem.67.11.5285-5293.2001

Google Scholar

[40] J. Li, G. Strobel, R. Sidhu, W.M. Hess, and E. Ford, Endophytic taxol-producing fungi from bald cypress, Taxodium distichum. Microbiology, vol. 142, 1996, p.2223–2226. Tables and Figures Table 2 Effect of different treatment on pot experiment conducted for cultivated rice plant Treatment Effect of treatment on growth parameters Seedling length Root length Root number Fresh wt Dry wt T21 16. 41±0. 41 11. 71±0. 46 8. 13±0. 27 96. 63±2. 25 20. 47±0. 54 Control 13. 37±0. 21 6. 46±0. 40 7. 27±0. 38 82. 97±3. 13 17. 58±0. 29 ± SEM based on fifteen replicates Table 3 ANOVA for cultivated rice(Oryza sativa) Parameters Sum of squares df F Sig. P value Seedling length 69. 008 1 42. 693 0. 000 P<0. 001 Root length 206. 981 1 75. 077 0. 000 P<0. 001 Root number 5. 633 1 3. 380 0. 077 P>0. 05 Fresh weight 1400. 833 1 12. 535 0. 001 P<0. 01 Dry weight 54. 706 1 20. 269 0. 000 P<0. 001 Table 4 Plant-associated microorganism conferring abiotic stress tolerance in crop plants Organism Crop Type of stress Mechanism Reference Pantoea agglomerans Wheat Drought Rhizosphere soil aggregation through EPS Amennal et al. (1998).

Google Scholar