Energy Absorption of an Re-Entrant Honeycombs with Negative Poisson’s Ratio

Article Preview

Abstract:

In the present paper, we have investigated a negative Poisson’s ratio structure with regular re-entrant cell shape to study its structural response under crush by rigid wall. Firstly, we created the geometry of cellular material in HYPERMESH. The developed geometrical model is imported into LS-DYNA. Then we use commercially available nonlinear explicit finite element code LS-DYNA to simulate the NPR material under uniformly distributed load. The deformation modes and energy absorption characteristics of NPR material were analyzed. Numerical results indicate that this NPR material have good ability of energy absorption.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

992-995

Citation:

Online since:

December 2011

Export:

Price:

[1] Williams, J.L., Lewis, J.L. Properties and an anisotropic model of cancellous bone from the proximal tibial epiphysis[J]. J. Biomech. Engrg. 1982, 104: 50-56.

DOI: 10.1115/1.3138303

Google Scholar

[2] Baughman , R.H., Shacklette, J.M., Zakhidov, A.A., Stafstrom S., Nature, 1998, 392: 362-365.

Google Scholar

[3] Grima, J.N., Jackson, R., Alderson, A., Evans, K.E., Adv. Mater. 2000, 12, 1912-(1918).

Google Scholar

[4] Lakes, R.S., Elms, K. Indentability of conventional and negative Poisson's ratio foams[J]. J Compos Mater 1993, 27: 1193-202.

DOI: 10.1177/002199839302701203

Google Scholar

[5] Lakes, R.,S. Design considerations for negative Poisson's ratio materials[J]. ASME J Mech Des 1993, 115: 696-700.

Google Scholar

[6] Scarpa, F., Tomlin, P., J. On the transverse shear modulus of negative Poisson's ratio honeycomb structures[J]. Fatigue Fract Eng Mater Struct 2000, 23: 717-20.

DOI: 10.1046/j.1460-2695.2000.00278.x

Google Scholar

[7] Scarpa, F., Tomlinson, G. Theoretical characteristics of the vibration of sandwich plates with in-plane negative Poisson's ratio values[J]. J Sound Vib 2000, 230: 45-67.

DOI: 10.1006/jsvi.1999.2600

Google Scholar

[8] Smith, F.C., Scarpa, F., Chambers B. The electromagnetic properties of re-entrant dielectric honeycombs[J]. IEEE Microwave Guided Wave Lett 2000, 10: 451-3.

DOI: 10.1109/75.888829

Google Scholar

[9] Rothenburg, L., Berlin, A.A., Bathurst, R.J., Microstructure of isotropic materials with negative Poisson's ratio[J]. Nature 1991, 354, 470-472.

DOI: 10.1038/354470a0

Google Scholar

[10] Evans, K.E., Nkansah, M.A., Hutchinson, I.J., Rogers, S.C., Molecular network design[J]. Nature 1991, 353, 124-125.

DOI: 10.1038/353124a0

Google Scholar

[11] Almgren, R.F., An isotropic three-dimensional structure with Poisson's ratio equal to minus one[J]. J. Elasticity 1985, 15, 427-430.

Google Scholar

[12] Wojciechowski, K.W., Branka, A.C., Negative Poisson ratio in a two-dimensional isotropic solid[J]. Phys. Rev. A 1989, 40, 7222-7225.

DOI: 10.1103/physreva.40.7222

Google Scholar

[13] Warren W.E., Kraynik, A.M., Foam mechanics: the linear elastic response of two-dimensional spatially periodic cellular materials[J]. Mech. Mater. 1987, 6, 27-37.

DOI: 10.1016/0167-6636(87)90020-2

Google Scholar

[14] Gibson, L.J., Ashby, M.F., Cellular Solids: Structure and Properties. Cambridge University Press, Cambridge, UK. (1997).

Google Scholar

[15] Smith, C.W., Grima, J.N., Evans, K.E., A novel mechanism for generating auxetic behaviour in reticulated foams: missing rib foam model[J]. Acta Mater. 2000. 48, 4349-4356.

DOI: 10.1016/s1359-6454(00)00269-x

Google Scholar

[16] Masters, I.G., Evans, K.E., Models for the elastic deformation of honeycombs[J]. Compos. Struct. 1999, 35, 403-422.

Google Scholar

[17] Torquato, S., Modeling of physical properties of composite materials[J]. Int. J. Solids Structures 2000, 37, 411-422.

Google Scholar

[18] Sigmund, O., A new class of extremal composites[J]. J. Mech. Phys. Solids 2000, 48, 397-428.

Google Scholar

[19] Yang, D.U., Lee, S., Huang, F.Y., Geometric effects on micropolar elastic honeycomb structure with negative Poisson's ratio using the finite element method[J]. Finite Elements in Analysis and Design 2003, 39, 187-205.

DOI: 10.1016/s0168-874x(02)00066-5

Google Scholar

[20] Lakes, R.S., Foam structures with a negative Poisson's ratio[J]. Science1987a, 235, 1038-1040.

Google Scholar

[21] Lakes, R.S., Negative Poisson's ratio materials[J]. Science1987b, 238, 551.

Google Scholar

[22] Lakes, R.S., Deformation mechanisms in negative Poisson's ratio materials: Structure aspects[J]. J. Mat. Sci. 1991, 26, 2287-2292.

DOI: 10.1007/bf01130170

Google Scholar

[23] Hallquist, J. LS-DYNA user's manual version: LS-DYNA 970 ed. 2003, Livermore Software Technology Corporation.

Google Scholar