EIS Study on the Deterioration Process of Organic Coatings under Immersion and Different Cyclic Wet-Dry Ratios

Article Preview

Abstract:

Under immersed and we-dry cyclic conditions, the deterioration processes of the organic coating on carbon steel surface have been comparatively studied using electrochemical techniques. The wet-dry cycles were carried out by exposure to 4 h immersion and 4h dryness (4-4h cycles) and 12h immersion and 12h dryness (12-12h cycles) conditions, respectively. The immersion condition was carry out in a 3.5% NaCl solution and drying at 298K and 50% RH. According to the EIS characteristics, the entire deterioration processes under above three mentioned conditions can be divided into three main stages, consisting of the medium penetration, corrosion initiation and corrosion extension. Comparing with the immersed, the 4-4h wet-dry cycles greatly accelerated the entire deterioration process; especially during the corrosion initiation and the corrosion extension periods, leading the paint system lose its anti-corrosive performance in a short period. However, the 12-12h wet-dry cycles decelerated the entire deterioration process, prolonging the coatings anticorrosive ability. The acceleration mechanism of the coatings and underlying metal corrosion under wet-dry cycles was discussed based on the above results.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

58-66

Citation:

Online since:

March 2012

Export:

Price:

[1] F. Deflorian, L. Fedrizzi, P. L. Bonora, Influence of the photo-oxidative degradation on the water barrier and corrosion protection properties of polyester paints, Corr. Sci. 38 (1996) 1697-1708.

DOI: 10.1016/s0010-938x(96)00062-5

Google Scholar

[2] M. D. G. Destreri, J. Vogelsang, L. Fedrizzi, L. Deflorian, Water up-take evaluation of new waterborne and high solid epoxy coatings, Prog. Org. Coat. 37 (1999) 69-81.

DOI: 10.1016/s0300-9440(99)00056-9

Google Scholar

[3] X. F. Yang, D. E. Tallman, S. G. Croll, G. P. Bierwagen, Morphological changes in polyurethane coatings on exposure to water, Polymer Degradation and Stability, 77 (2002) 391-396.

DOI: 10.1016/s0141-3910(02)00084-8

Google Scholar

[4] J. H. Park, G. D. Lee, H. Ooshige, A. Nishikata, T. Tsuru, Monitoring of water uptake in organic coatings under cyclic wet–dry condition, Corr. Sci. 45 (2003) 1881-1894.

DOI: 10.1016/s0010-938x(03)00024-6

Google Scholar

[5] L. H. Jr, W. Wang, L. Igetoft, The mechanism for the cathodic delamination of organic coatings from a metal surface, Prog. Org. Coat. 11 (1983) 19-40.

DOI: 10.1016/0033-0655(83)80002-8

Google Scholar

[6] A. Leng, H. Streckel, M. Stratmann, The delamination of polymeric coatings from steel. Part 1 : Calibration of the Kelvinprobe and basic delamination mechanism, Corr. Sci. 41 (1999)547-578.

DOI: 10.1016/s0010-938x(98)00166-8

Google Scholar

[7] N. D. Tomashov, Development of the electrochemical theory of metallic corrosion, Corrosion, 20 (1964) p.7-14t.

DOI: 10.5006/0010-9312-20.1.7t

Google Scholar

[8] M. Stratmann, H. Streckel, K. T. Kim, S. Crockett, On the atmospheric corrosion of metals which are covered with thin electrolyte layers-iii. the measurement of polarisation curves on metal surfaces which are covered by thin electrolyte layers, Corr. Sci. 30 (1990) 715-734.

DOI: 10.1016/0010-938x(90)90034-3

Google Scholar

[9] J. Wang, T. Tsuru T, An investigation on oxygen reduction under thin electrolyter layer using kelvin probe reference electrode, J. Chin. Soc. Corr. Prot. 15 (1995) 180-188.

Google Scholar

[10] T. Tsuru, A. Nishikata, J. Wang, Electrochemical studies on corrosion under a water film, Mater. Sci. Eng, A198 (1995)161-168.

Google Scholar

[11] A. Nishikata, Y. Ichihara, T. Tsuru, An application of electrochemical impedance spectroscopy to atmospheric corrosion study, Corr. Sci. 37 (1995) 897-911.

DOI: 10.1016/0010-938x(95)00002-2

Google Scholar

[12] A. Amirudin, D. Thierry, Application of electrochemical impedance spectroscopy to study the degradation of polymer-coated metals, Prog. Org. Coat. 26 (1995) 1-28.

Google Scholar

[13] J. Q. Zhang, C. N. Cao, Study and evaluation on coatings by electrochemical impedance spectroscopy, Corrosion and Protection 19 (1998) 99-104.

Google Scholar

[14] Q. L. Thu, H. Takenouti, S. Touzain, EIS characterization of thick flawed organic coatings aged under cathodic protection in seawater, Electrochim. Acta. 51 (2006) 2491-2502.

DOI: 10.1016/j.electacta.2005.07.049

Google Scholar

[15] X. Zhao, J. Wang, Y. H. Wang, T. Kong, L. Zhong, W. Zhang, Analysis of deterioration process of organic protective coating using EIS assisted by SOM network, Electrochem. Commun. 9 (2007)1394-1399.

DOI: 10.1016/j.elecom.2007.01.049

Google Scholar

[16] W. Zhang, J. Wang, Z. Y. Zhao, J. Jiang, Study on deterioration process of organic coatings by EIS and SKP , Chem. J. Chin. Uni. 30 (2009)762-766.

Google Scholar

[17] P. L. Bonora, F. Deflorian, L. Fedrizzi, Electrochemical impedance spectroscopy as a tool for investigating underpaint corrosion, Electrochim. Acta. 41 (1996) 1073-1082.

DOI: 10.1016/0013-4686(95)00440-8

Google Scholar

[18] L. Fedrizzi, F. Deflorian, G. Boni, P. L. Bonora, E. Pasini, EIS study of environmentally friendly coil coating performances, Prog. Org. Coat. 29 (1996) 89-96.

DOI: 10.1016/s0300-9440(96)00620-0

Google Scholar

[19] R. L. Howard, S. B. Lyon, J. D. Scantlebury, Accelerated tests for prediction of cut edge corrosion of coil-coated architectural cladding. Part II: cyclic immersion, Prog. Org. Coat. 37 (1999) 99-105.

DOI: 10.1016/s0300-9440(99)00062-4

Google Scholar

[20] A. Gamal, El-Mahdy, A. Nishikata, T. Tsuru, Electrochemical corrosion monitoring of galvanized steel under cyclic wet–dry conditions, Corr. Sci. 42 (2000) 183-194.

DOI: 10.1016/s0010-938x(99)00057-8

Google Scholar

[21] A. Gamal, EL-Mahdy, Atmospheric corrosion of copper under wet/dry cyclic conditions, Corr. Sci. 47 (2005) 1370-1383.

DOI: 10.1016/j.corsci.2004.07.034

Google Scholar

[22] F. Deflorian, L. Fedrizzi, S. Rossi, P. L. Bonora, Organic coating capacitance measurement by EIS: ideal and actual trends, Electrochim. Acta. 44 (1999) 4243-4294.

DOI: 10.1016/s0013-4686(99)00139-5

Google Scholar

[23] G. Lendvay-Gyorik, T. Pajkossy, B. Lengyel, Corrosion-protection properties of water-borne paint coatings as studied by electrochemical impedance spectroscopy and gravimetry, Prog. Org. Coat. 56 (2006) 304-310.

DOI: 10.1016/j.porgcoat.2006.05.012

Google Scholar

[24] A. P. Yadav, A. Nishikata, T. Tsuru, Electrochemical impedance study on galvanized steel corrosion under cyclic wet–dry conditions––influence of time of wetness, Corr. Sci. 46 (2004) 169-181.

DOI: 10.1016/s0010-938x(03)00130-6

Google Scholar