Utilization of XSYTIN-1 Tool in Electrically-Assisted Friction Stir Welding of Dissimilar Metals - Al 6061-T651 to Mild Steel

Article Preview

Abstract:

Friction stir welding (FSW) is a solid-state metal fusion process that is characterized by several benefits over comparable processes such as a reduction in energy input and low part distortion. This process has been shown to hold great potential in the fusion of dissimilar metals, a technology highly sought after in the aerospace and automotive industries for its promising weight-reduction capabilities. Furthermore, electrically-assisted FSW (EAFSW) is the supplementation of the FSW process with an electrical current. This modification has been shown to improve many parameters; however, the current literature related to this subject is scarce. Herein, the fusion of Al 6061-T651 to mild steel is performed using EAFSW methods. A novel tool constructed a proprietary ceramic, XSYTIN-1, is also tested in this application. It was found that EAFSW improved material flow between the constituent materials; however, was unable to increase the joint strength of the weld. Additionally, it was found that the XSYTIN-1 tool did not exhibit any significant differences when compared to a conventional steel tool.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

31-41

Citation:

Online since:

April 2019

Export:

Price:

* - Corresponding Author

[1] Uzun, H., Dalle Donne, C., Argagnotto, A., Ghidini, T., & Gambaro, C. (2005). Friction stir welding of dissimilar Al 6013-T4 to X5CrNi18-10 stainless steel. Materials & design, 26(1), 41-46.

DOI: 10.1016/j.matdes.2004.04.002

Google Scholar

[2] Tanaka, T., Morishige, T., & Hirata, T. (2009). Comprehensive analysis of joint strength for dissimilar friction stir welds of mild steel to aluminum alloys. Scripta Materialia, 61(7), 756-759.

DOI: 10.1016/j.scriptamat.2009.06.022

Google Scholar

[3] Coelho, R. S., Kostka, A., Dos Santos, J. F., & Kaysser-Pyzalla, A. (2012). Friction-stir dissimilar welding of aluminium alloy to high strength steels: Mechanical properties and their relation to microstructure. Materials Science and Engineering: A, 556, 175-183.

DOI: 10.1016/j.msea.2012.06.076

Google Scholar

[4] Sadmai, K., Kaewwichit, J., Roybang, W., Keawsakul, N., & Kimapong, K. (2015). Microstructure and Tensile Strength of Butt Joint between AA6063 Aluminum Alloy and AISI304 Stainless Steel by Friction Stir Welding. The International Journal of Advanced Culture Technology, 3(1), 179-187.

DOI: 10.17703/ijact.2015.3.1.179

Google Scholar

[5] Derazkola, H. A., & Khodabakhshi, F. (2018). Intermetallic compounds (IMCs) formation during dissimilar friction-stir welding of AA5005 aluminum alloy to St-52 steel: numerical modeling and experimental study. The International Journal of Advanced Manufacturing Technology, 1-22.

DOI: 10.1007/s00170-018-2879-8

Google Scholar

[6] Derazkola, H. A., Aval, H. J., & Elyasi, M. (2015). Analysis of process parameters effects on dissimilar friction stir welding of AA1100 and A441 AISI steel. Science and Technology of Welding and Joining, 20(7), 553-562.

DOI: 10.1179/1362171815y.0000000038

Google Scholar

[7] Salih, O. S., Ou, H., Sun, W., & McCartney, D. G. (2015). A review of friction stir welding of aluminium matrix composites. Materials & Design, 86, 61-71.

DOI: 10.1016/j.matdes.2015.07.071

Google Scholar

[8] Rodriguez, R. I., Jordon, J. B., Allison, P. G., Rushing, T., & Garcia, L. (2015). Microstructure and mechanical properties of dissimilar friction stir welding of 6061-to-7050 aluminum alloys. Materials & Design, 83, 60-65.

DOI: 10.1016/j.matdes.2015.05.074

Google Scholar

[9] Ilangovan, M., Boopathy, S. R., & Balasubramanian, V. (2015). Microstructure and tensile properties of friction stir welded dissimilar AA6061–AA5086 aluminium alloy joints. Transactions of Nonferrous Metals Society of China, 25(4), 1080-1090.

DOI: 10.1016/s1003-6326(15)63701-3

Google Scholar

[10] Sato, Y. S., Park, S. H. C., Michiuchi, M., & Kokawa, H. (2004). Constitutional liquation during dissimilar friction stir welding of Al and Mg alloys. Scripta Materialia, 50(9), 1233-1236.

DOI: 10.1016/j.scriptamat.2004.02.002

Google Scholar

[11] Mofid, M. A., Abdollah-Zadeh, A., & Ghaini, F. M. (2012). The effect of water cooling during dissimilar friction stir welding of Al alloy to Mg alloy. Materials & Design (1980-2015), 36, 161-167.

DOI: 10.1016/j.matdes.2011.11.004

Google Scholar

[12] Mofid, M. A., Abdollah-Zadeh, A., Ghaini, F. M., & Gür, C. H. (2012). Submerged friction-stir welding (SFSW) underwater and under liquid nitrogen: an improved method to join Al alloys to Mg alloys. Metallurgical and Materials Transactions A, 43(13), 5106-5114.

DOI: 10.1007/s11661-012-1314-2

Google Scholar

[13] Karakizis, P. N., Nasioulas, E. C., Chionopoulos, S., & Pantelis, D. I. (2017) The effect of dry ice cooling on the microstructure of dissimilar friction stir welds between aluminum and magnesium. 6th ICMEN International Conference.

Google Scholar

[14] Fu, B., Qin, G., Li, F., Meng, X., Zhang, J., & Wu, C. (2015). Friction stir welding process of dissimilar metals of 6061-T6 aluminum alloy to AZ31B magnesium alloy. Journal of Materials Processing Technology, 218, 38-47.

DOI: 10.1016/j.jmatprotec.2014.11.039

Google Scholar

[15] Ferrando, W. A. (2008). The concept of Electrically Assisted Friction Stir Welding (EAFSW) and application to the processing of various metals. Technical Report (NSWCCD-61-TR-2008/13). Naval Surface Warfare Center Carderock Division.

DOI: 10.21236/ada487182

Google Scholar

[16] Luo, J., Chen, W., & Fu, G. (2014). Hybrid-heat effects on electrical-current aided friction stir welding of steel, and Al and Mg alloys. Journal of Materials Processing Technology, 214(12), 3002-3012.

DOI: 10.1016/j.jmatprotec.2014.07.005

Google Scholar

[17] Liu, X., Lan, S., & Ni, J. (2015). Electrically assisted friction stir welding for joining Al 6061 to TRIP 780 steel. Journal of Materials Processing Technology, 219, 112-123.

DOI: 10.1016/j.jmatprotec.2014.12.002

Google Scholar

[18] Santos, T. G., Miranda, R. M., & Vilaca, P. (2014). Friction Stir Welding assisted by electrical Joule effect. Journal of Materials Processing Technology, 214(10), 2127-2133.

DOI: 10.1016/j.jmatprotec.2014.03.012

Google Scholar

[19] Potluri, H., Jones, J. J., & Mears, L. (2013). Comparison of electrically-assisted and conventional friction stir welding processes by feed force and torque. In Proc. of ASME International Manufacturing Science and Engineering Conference Paper No. MSEC2013-1192.

DOI: 10.1115/msec2013-1192

Google Scholar

[20] Manisegaran, L. V., Ahmad, N. A., Nazri, N., Noor, A. S. M., Ramachandran, V., Ismail, M. T., Ahmad, K. Z. K., & Daruis, D. D. I. (2018, May). Optimizing friction stir weld parameters of aluminum and copper using conventional milling machine. In AIP Conference Proceedings (Vol. 1958, No. 1, p.020013). AIP Publishing.

DOI: 10.1063/1.5034544

Google Scholar

[21] Elyasi, M., Aghajani Derazkola, H., & Hosseinzadeh, M. (2016). Investigations of tool tilt angle on properties friction stir welding of A441 AISI to AA1100 aluminium. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 230(7), 1234-1241.

DOI: 10.1177/0954405416645986

Google Scholar