Novel Antibacterial Nanofibers of Chitosan and Polyurethane Prepared by Electrospinning

Article Preview

Abstract:

The chitosan(CS)/polyurethane(PU) blend nanofibers have been prepared for the first time by electrospinning. Formic acid (FA) and Hexafluoroisopropanol (HFIP) were found to be the co-solvent for electrospinning. The CS/PU blend solutions in various ratios were studied for electrospinning into nanofibers. The diameter and morphology of the fibers were shown by scanning electron microscope (SEM). It was found that the average diameter of the chitosan/PU blend fibers became larger, and the morphology of the fibers became finer with the content of PU increasing. To show the molecular interactions, CS/PU fibers were characterized by Fourier transform infrared spectroscopy (FT-IR). Moreover, the antibaterial activity of blend nanofibers against Escherichia coil (E.coil) was measured via optical density method. The blend nanofibers exhibited satisfying antibacterial activity against E.coil, even the chitosan concentration was only 5wt%. Therefore, the spun nanofibers are expected to be used in the native extracellular matrix for tissue engineering.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 150-151)

Pages:

1452-1456

Citation:

Online since:

October 2010

Export:

Price:

[1] S. Ramakrishna, K. Fujihara, W.E. Teo, T. Yong, Z.W. Ma, R. Ramaseshan: Mater. Today. 9(2006), p.40.

Google Scholar

[2] W. H. Park, L. Jeong, D. I. Yoo, S. Hudson: Polymer 45(2004), p.7151.

Google Scholar

[3] S. H. Kim, Y. S. Nam, T. S. Lee, W. H. Park: Polym J 35 (2003), p.185.

Google Scholar

[4] J. Zeng, X. Xu, X. Chen, Q. Liang, X. Bian, L. Yang: J Control Release 92 (2003), p.227.

Google Scholar

[5] X. Zong, S. Ran, D. Fang, S. B. Hsiao, B. Chu: Polymer 44(2003), p.4959.

Google Scholar

[6] S. Agarwal, J.H. Wendorff, A. Greiner: Polymer 49(2008), p.5603.

Google Scholar

[7] V. Dodane, V. D. Vilivalam: Pharm Sci Technol Today 1(1998), p.246.

Google Scholar

[8] F. Shahidi, J. K. Arachchi, Y. J. Jeon: Trends Food Sci Technol 10(1999), p.37.

Google Scholar

[9] E. I. Rabea, M. E. Badawy, C. V. Stevens: Biomacromolecules 4(2003), p.1457.

Google Scholar

[10] J. Xu, J. H. Zhang, W. Q. Gao, H. W. Liang , H. W. Wang, J. F. Li: Mater Lett 63(2009), p.658.

Google Scholar

[11] N. Bhattarai, D. Edmondson, O. Veiseh, F. A. Matsen, M. Q. Zhang: Biomaterials 26(2005), p.6176.

DOI: 10.1016/j.biomaterials.2005.03.027

Google Scholar

[12] Y. T. Jia, J. Gong, X. H. Gu, H. Y. Kim, J. Dong, X. Y. Shen: Carbohydr Polym 67(2007), p.403.

Google Scholar

[13] Y. H. Zhou, D. Z. Yang, X. M. Chen, Q. Xu, F. M. Lu, J. Nie: Biomacromolecules 9 (2008), p.349.

Google Scholar

[14] M. M. Demir, I. Yilgor, E. Yilgor, B. Erman: Polymer 43 (2002), p.3303.

DOI: 10.1016/s0032-3861(02)00136-2

Google Scholar

[15] A. Pedicini, R. J. Farris: Polymer. 44(2003), p.6857.

Google Scholar

[16] J. Guan, K. L. Fujimoto, M. S. Sacks,W. R. Wagner: Biomaterials 26(2005), p.3961.

Google Scholar

[17] X. F. Liu, Y. L. Guan, D. Z. Yang: J. Appl. Polym. Sci. 79(2001), p.1324.

Google Scholar

[18] B. M. Min, S. W. Lee, J. N. Lim, Y. You, T. S. Lee, P. H. Kang, W. H. Park: Polymer 45(2004), p.7137.

Google Scholar

[19] X. H. Zong, K. S. Kim, D. F. Fang, S. F. Ran, B. S. Hsiao, B. J. Chu: Polymer 43(2002), p.4403.

Google Scholar