Effect of pH on TiO2 Nanoparticles via Sol-Gel Method

Article Preview

Abstract:

A series of titania nanoparticles was successfully synthesized via sol gel method using titanium tetraisopropoxide as a precursor. In this paper, data concerning the effect of pH towards the development of TiO2 nanoparticles is reported. The samples were characterised by x-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). XRD results showed the existence of nanocrystalline anatase phases with crystallite size ranging from 7-14 nm. Surface morphological studies obtain from SEM micrograph showed the particles with rodlike shape are rutile while the spherical shapes are anatase in nature. It was also found the pH of the solution affect the agglomeration of the particles. Results of photocatalytic studies exhibits that titania powder prepared at pH 9 has an excellent photocatalytic activity with degradation 74.7% within 60 minutes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

184-189

Citation:

Online since:

December 2010

Export:

Price:

[1] K. Porkodi and S. Daisy Arokiamary, Materials Characterization 58 (2007) 495–503.

Google Scholar

[2] N. S. Allen , M. Edge , J. Verran , J. Stratton , J. Maltby , C. Bygott, Polymer Degradation and Stability 93 (2008) 1632–1646.

DOI: 10.1016/j.polymdegradstab.2008.04.015

Google Scholar

[3] X. Chen and S. S. Mao, Chem. Rev. 2007, 107, 2891-2959.

Google Scholar

[4] F. Cao, G. Oskam, P. C. Searson, J. M. Stipkala, T. A. Heimer, F. Farzad, G. J. Meyer. .J. Phys. Chem., 1995, 99 (31), 11974–11980.

DOI: 10.1021/j100031a027

Google Scholar

[5] C. C Wang and J.Y. Ying, Chem. Mater. 11, (1999). 3113-3120.

Google Scholar

[6] S. Mahshid, M. Askari, M. S. Ghamsari, N. Afshar, S. Lahuti. Journal of Alloys and Compounds 478 (2009) 586–589.

DOI: 10.1016/j.jallcom.2008.11.094

Google Scholar

[7] H. Liu, W. Yang, Y. Ma, Y. Cao, J. Yao, J. Zhang and T. Hu, Langmuir, 19, (2003). 3001-3005.

Google Scholar

[8] B. L. Bischof and M. A. Anderson. Chem. Mater. 1995, 7, 1772-1778.

Google Scholar

[9] Jinghuan Zhang, Xin Xiao, Junmin Nan Journal of Hazardous Materials 176 (2010) 617–622.

Google Scholar

[10] Dongjin Byun, Yongki Jin, Bumjoon Kim, Joong Kee Lee, Dalkeun Park., Journal of Hazardous Materials, 73. 2000. 199-206.

Google Scholar

[11] Juha-Pekka Nikkanen_, Tomi Kanerva, Tapio Ma¨ ntyla. Journal of Crystal Growth 304 (2007) 179–183.

Google Scholar

[12] Humin Cheng, Jiming Ma, Zhenguo Zhao, and Limin Qi. Chem. Mater. 1995, 7, 663-671.

Google Scholar

[13] S. T. Aruna, S. Tirosh and A. Zaban, J. Mater. Chem., 2000, 10, 2388-2391.

Google Scholar

[14] J. D. Ellis and A. G. Sykes, J. Chem. Soc., Dalton Trans., 1973, 537.

Google Scholar

[15] M. Henry, J. P. Jolivet and J. Livage, in Aqueous Chemistry of Metal Cations, Hydrolysis, Condensation, and Complexation, ed.R. Reisfeld and C. K. Jorgensen, Springer-Verlag, Berlin, 1992, p.155.

DOI: 10.1002/chin.199240293

Google Scholar

[16] D. Bahnemann, A. Henglein, L. Spanhel. Faraday Discuss. Chem. Soc. Vol. 78 (1984) 151.

DOI: 10.1039/dc9847800151

Google Scholar

[17] C. Su, B. Y. Hong, C.M. Tseng. Sol–gel preparation and photocatalysis of titanium dioxide. Catalysis Today 96. 2004. 119–126.

DOI: 10.1016/j.cattod.2004.06.132

Google Scholar

[18] Nor Hafizah and I. Sopyan, International Journal of Photoenergy Volume 2009, Article ID 962783.

Google Scholar

[19] M. Maeda, T. Watanabe, Surface & Coatings Technology, Vol. 201 (2007) 9309–9312.

Google Scholar