A Novel Biocompatible Actuator Based on Electrospun Cellulose Acetate

Article Preview

Abstract:

Fullerene reinforced electrospun cellulose Acetate(CA) nano fibers based composite dry-type actuators were newly developed. Morphology of the electro spun fibers showed good dispersion of the fullerene within the nano fibers whereas XRD studies slight increase in crystallinity. FTIR spectra showed interactions between the hydroxyl moieties of fullerene with cellulose. Stress-strain curves showed substantial increase in tensile strength even with minute concentrations of filler. Our results show nearly three fold increase in tip displacement even with 0.5 wt% fullerenes under both AC and DC conditions. The efficiency of the actuators was also calculated from current-voltage diagrams.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

359-363

Citation:

Online since:

February 2011

Export:

Price:

[1] J.H. Jeon, I.K. Oh, Bacterial cellulose actuator with electrically driven bending deformation in hydrated condition, Sensors and Actuators B 146(2010)307-313.

DOI: 10.1016/j.snb.2010.02.046

Google Scholar

[2] J.H. Jung, S.V., I.K. Oh, Electro-active nano-composite actuator based on fullerene-reinforced Nafion, Composites Science and Technology 70(2010) 584-592.

DOI: 10.1016/j.compscitech.2009.12.007

Google Scholar

[3] J.H. Jeon, S.W. Yeom, I.K. Oh, Fabrication and actuation of ionic polymer metal composites patterned by combining electrosplating with electroless plating. Composites Part A 39(2008) 588-596.

DOI: 10.1016/j.compositesa.2007.07.013

Google Scholar

[4] S.W. Yeom, I.K. Oh, A biomimetic jellyfish robot based on ionic polymer metal composite actuators, Smart Mater, Struct. 18(2009)085002S.

DOI: 10.1088/0964-1726/18/8/085002

Google Scholar

[5] J.H. Jeon, I.K. Oh, Selective growth of platinum electrodes for MDOF IPMC actuators, Thin Soled Films 517(2009)5288-5292.

DOI: 10.1016/j.tsf.2009.03.111

Google Scholar

[6] Y.K. Luu, K. Kim, B.S. Hsiao, B. Chu, M. Hadjiargyrou, Development of a nanostructured DNA delivery scaffold via electrospinng of PLGA and PLA-PEG block copolymers, J. Control. Release 89(2003) 341.

DOI: 10.1016/s0168-3659(03)00097-x

Google Scholar

[7] G. Verreck, I. Chun, J. Rosenblatt, J. Peeters, A.V. Dijck, J. Mensch, M. Noppe, M.E. Brewster, Incorporation of drugs in an amorphous state into electrospun nanofibers composed of a water-insoluble, nonbiodegradable polymer, J. Control. Release 92(2003).

DOI: 10.1016/s0168-3659(03)00342-0

Google Scholar

[8] X. Wang, C. Drew, S.H. Lee, K.J. Senecal, J. Kumar, L.A. Samuelson, Electrospun nanofibrous membranes for highly sensitive optical sensors, Nano Lett. 11 (2002) 1273–1275.

DOI: 10.1021/nl020216u

Google Scholar

[9] B. Ding, J.H. Kim, Y. Miyazaki, S.M. Shiratori, Electrospun nanofibrous membranes coated quartz crystal microbalance as gas sensor for NH3 detection, Sens. Actuators B: Chem. 101 (2004) 373–380.

DOI: 10.1016/j.snb.2004.04.008

Google Scholar

[10] P.I. Gouma, Nanostructured polymorphic oxides for advanced chemosensors, Rev. Adv. Mater. Sci. 5 (2003) 147–154.

Google Scholar

[11] M.M. Bergshoef, G.J. Vancso, Transparent nanocomposites with ultrathin, electrospun nylon-4, 6 fiber reinforcement, Adv. Mater. 11(1999) 1362-1365.

DOI: 10.1002/(sici)1521-4095(199911)11:16<1362::aid-adma1362>3.0.co;2-x

Google Scholar

[12] M. Schilling, M. Bouchard, H. Khanjian, T. Learner, A. Phenix, R. Rivenc. Acc. Chem. Res. 2010, 43, 888. Figure 1 Experimental setup for testing the actuation performance of electrospun cellulose acetate-fullerene nano-fibrous membr©©anes . Figure 3 FTIR spectra of electropsun cellulose acetate and fullerenol Figure 2 SEM morphology of electrospun CA-fullerene nanofibrous membranes. Figure 4 XRD spectra of electropsun cellulose acetate and fullerenol Figure 5 Schematic representation of arrangement of fullerenols in electropsun CA nanofibrous Figure 6 AC(a and b) and DC(c) induced tip dsiplacement in electrospun nanofibrous cellulose acetate dry actuators; Digital photograph of the time-response(d).

DOI: 10.1021/acsami.6b05429.s001

Google Scholar