Synthesis and Characterization of Nano Hydroxyapatite

Article Preview

Abstract:

Hydroxyapatite (HA) is considered to form major component of bones and teeth. Synthesis of hydroxyapatite (Calcium phosphate, Ca10(PO4)6(OH)2) was carried out to produce nano powders. The size and shape of nano particles was controlled during synthesis by using templates of Cetyl Trimethyl Ammonium Bromide (CTAB). A cationic surfactant, CTAB creates micellar structures which would act as nano reactors for the synthesis of nano scale HA. Yield of the final product has also been examined by varying the surfactant concentration. X-ray diffraction data revealed characteristic peaks of HA, where a predominantly hexagonal lattice structure could be deduced. FTIR was used to observe the various chemical groups present in the product. Scanning electron microscope was used for the characterization of nano particles.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 264-265)

Pages:

1370-1375

Citation:

Online since:

June 2011

Export:

Price:

[1] S.V. Dorozkhin and M. Epple: Angew. Chem. Vol. 41 (2002), p.3130.

Google Scholar

[2] J. Currey: Nature Vol. 41 (2001), p.4699.

Google Scholar

[3] J.B. Thompson, J. H. Kindt, B. Drake, H.G. Hansma, D.E. Morse and P.K. Hansam: Nature Vol. 414 (2001), p.773.

Google Scholar

[4] S. Bose and S.K. Saha: J. Chem. Mater. Vol. 15 (2003), p.4464.

Google Scholar

[5] A. Tempierir, G. Celotti, F. Szontagh and E. Lardi: J. Mater. Sci., Mater. Med. Vol. 8 (1997), p.29.

Google Scholar

[6] H. Aaki, Science and medical association of hydroxyapatite, Japanese Association of Apatite Science, Tokyo, Japan (1991).

Google Scholar

[7] W. Suchanek and M. Yoshimura: J. Am. Ceram. Soc. Vol. 13 (1998), p.94.

Google Scholar

[8] R.Z. Legeros, Calcium phosphates in oral biology and medicine, Karger Basel, Switzerland (1991).

Google Scholar

[9] P.M. Pileni: Langmuir Vol. 13 (1997), p.3266.

Google Scholar

[10] B.R. Heywood and S. Mann: Adv. Mater. Vol. 4 (1992), p.278.

Google Scholar

[11] S. Mann, G.A. Ozin: Nature Vol. 382 (1996), p.313.

Google Scholar

[12] D. Walsh, J. L Kingston, B.R. Heywood and S. Mann: J. Crsyt. Growth Vol. 133 (1993), p.1.

Google Scholar

[13] D.H. Gray, H. Hu, E. Juang and D.L. Gin: Adv. Mater. Vol. 9 (1997), p.731.

Google Scholar

[14] C. Tanford, The Hydrophobic Effect-formation of Micelles and Biological Membranes. John Wiley, (1980).

Google Scholar

[15] S. Mann, D.D. Archibald, J.M. Didymas, T. Douglass, B.R. Heywood, F.C. Meldrum: Science Vol. 261 (1993), p.1286.

Google Scholar

[16] S. Mann: Nature Vol. 365 (1995), p.499.

Google Scholar

[17] D.D. Archibald and S. Mann: Nature Vol. 364 (1993), p.430.

Google Scholar

[18] J. Weissbuch, F. Frolow, J. Addadi, M. Lahav and L. Leiserowitz: J. Am. Chem. Soc. Vol. 112 (1990) p.7718.

Google Scholar

[19] L. Yan, Y. Li, Z.X. Deng, J. Zhuang and X. Sun: Inter. J. Inorg. Mater. Vol. 3 (2001) p.633.

Google Scholar

[20] E. Jungerman, Cationic Surfactants Mercel Dekker, New York (1969).

Google Scholar

[21] J.M. Ruso, D. Altwood, P. Taboada and V. Mosquera: Colloid Polym. Sci. Vol. 280 (2002) p.336.

Google Scholar

[22] O.R. Pal, V.G. Gaikar, J.V. Joshi, P.S. Goyal and V.K. Aswal: Langmuir Vol. 18 (2002), p.6764.

Google Scholar

[23] J.J. Galon, A. Gonzalez-Perez, L. Del Castilllo. And J.R. Radriguez: J. Them. Anal. Colorimetry Vol. 70 (2004), p.229.

Google Scholar

[24] K. Fujio, T. Mitsui, H. Kurumizawa, Y. Tanaka and Y. Uzu: Colloid Polym. Sci. Vol. 282 (2004) p.223.

Google Scholar

[25] B.D. Cullity, Elements of X-ray Diffraction, Addison-Wesley Publishing Company, pp.99-102 (1978).

Google Scholar

[26] J. Haldar, K.V. Aswal, P.S. Goyal and S. Bhattacharya: J. Phys. Chem. B Vol. 108 (31) (2004), p.11406.

Google Scholar

[27] F.C. Meldrum, N.A. Kotov and J.H. Fedler: J. Phys. Chem. Vol. 98 (1994), p.4506.

Google Scholar