Non-Isothermal Kinetics Studies on the Thermal Decomposition of Boron Doped g-C3N4 by TG Method

Article Preview

Abstract:

Melamine and boron trioxide (B2O3) were directly pyrolyzed in semi-closed system to prepare Boron doped g-C3N4. The analytic results of XRD, XPS and FTIR proved that g-C3N4 is doped by boron successfully. The thermal decomposition of B doped g-C3N4 has been studied using TGA-DTG technique. The iterative procedure method was employed to calculate the activation energy Eα, and the most reasonable kinetic function of the decomposition of B doped g-C3N4 was confirmed by the integral method with 36 types of kinetic function .

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 550-553)

Pages:

2660-2667

Citation:

Online since:

July 2012

Export:

Price:

[1] G. Goglio, D. Foy, G. Demazeau, Materials Science and Engineering R Reports, 58(6), 195 (2008).

Google Scholar

[2] S. M. Lyth, Y. Nabae, S. Moriya, S. Kuroki, M. Kakimoto, J. OzakiS. Miyata, The Journal of Physical Chemistry C, 113(47), 20148 (2009).

DOI: 10.1021/jp907928j

Google Scholar

[3] M. Deifallah, P. F. McMillan, F. Corà, The Journal of Physical Chemistry C, 112(14), 5447 (2008).

Google Scholar

[4] A. Fischer, J. O. Müller, M. Antonietti, A. Thomas, ACS nano, 2(12), 2489 (2008).

Google Scholar

[5] X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, M. Antonietti, Nature Materials, 8(1), 76 (2008).

Google Scholar

[6] K. Maeda, X. Wang, Y. Nishihara, D. Lu, M. Antonietti, K. Domen, The Journal of Physical Chemistry C, 113(12), 4940 (2009).

Google Scholar

[7] Y. Zhang, M. Antonietti, Chemistry–An Asian Journal, 5(6), 1307 (2010).

Google Scholar

[8] J. L. Brédas, J. E. Norton, J. Cornil, V. Coropceanu, Accounts Chem Res, 42(11), 1691(2009).

Google Scholar

[9] S. C. Yan, Z. S. Li, Z. G. Zou, Langmuir, 26(6), 3894 (2010).

Google Scholar

[10] Y. Zhang, A. Thomas, M. Antonietti, X. Wang, J Am Chem Soc, 131(1), 50 (2008).

Google Scholar

[11] G. Liu, P. Niu, C. Sun, S. C. Smith, Z. Chen, G. Q. M. Lu, H. M. Cheng, J Am Chem Soc, 132(33), 11642 (2010).

Google Scholar

[12] Y. Wang, Y. Di, M. Antonietti, H. Li, X. Chen, X. Wang, Chem Mater, 22(18), 5119(2010).

Google Scholar

[13] Y. Wang, J. Zhang, X. Wang, M. Antonietti, H. Li, Angewandte Chemie International Edition, 49(19), 3356 (2010).

Google Scholar

[14] S. C. Yan, Z. S. Li, Z. G. Zou, Langmuir, 25(17), 10397 (2009).

Google Scholar

[15] J. Yang, T. Qiu, C. Y. Shen, L. M. Pan, J Inorg Mater, 24(1), 13 (2009).

Google Scholar

[16] B. V. Lotsch, M. D Blinger, J. Sehnert, L. Seyfarth, J. Senker, O. Oeckler, W. Schnick, Chemistry–A European Journal, 13(17), 4969 (2007).

DOI: 10.1002/chem.200601759

Google Scholar

[17] S. Z. Bai, B. Yao, B. K. Huang, S. J. Zhang, Z. H. Ding, X. Y. Guo, X. D. Zhou, W. H. Su, Chemical Journal of Chinese Universities , 26(5): 811 (2005).

Google Scholar

[18] Z. F. Zhou, I. Bello, M. K. Lei, K. Y. Li, C. S. Lee, S. T. Lee, Surface and Coatings Technology, 128(1), 334 (2000).

Google Scholar

[19] V. Linss, S. E. Rodil, P. Reinke, M. G. Garnier, P. Oelhafen, U. Kreissig, F. Richter, Thin Solid Films, 467(1-2), 76 (2004).

DOI: 10.1016/j.tsf.2004.03.009

Google Scholar

[20] A. Kandelbauer, G. Wuzella, A. Mahendran, I. Taudes, P. Widsten, Chem Eng J, 152(2-3), 556 (2009).

DOI: 10.1016/j.cej.2009.05.027

Google Scholar

[21] Hu R Z, Shi Q Z, Thermal Analysis Kinetics, Science Press, Beijing (2001).

Google Scholar

[22] L. Liqing, C. Donghua, Journal of thermal analysis and calorimetry, 78(1), 283 (2004).

Google Scholar

[23] L. Vlaev, N. Nedelchev, K. Gyurova, M. Zagorcheva, J Anal Appl Pyrol, 81(2), 253 (2008).

Google Scholar

[24] Z. Li, X. Shen, X. Feng, P. Wang, Z. Wu, Thermochim Acta, 438(1-2), 102 (2005).

Google Scholar

[25] H. Jiang, J. Wang, S. Wu, B. Wang, Z. Wang, Carbon, 48(2), 352 (2010).

Google Scholar