Magnetic Field-Induced Granular Pearlite at Early Stages of Phase Transformation

Article Preview

Abstract:

ffects of high magnetic fields (HMF) up to 19.81T on pearlite phase transformation are studied by examination of the microstructures of a Fe-0.47C-2.3Si-3.2Mn (wt %) alloy partially isothermally processed above the eutectoid temperature. The results show that granular pearlite (GP) can be obtained at earlier transformation stages. The evolution of the granular pearlite is always accompanied by the formation of lamellar pearlite. TEM analysis reveals the existence of sub-grain boundaries within GP colonies and indicates that the nucleation of ferrite matrix in GP belongs to multiple nucleation mechanism. Most of carbides at the early stage of pearlite formation are found to precipitate at the α/γ interface--the growing front of ferrite phases, and some of coarse carbides can further develop into thin lamellar cementite.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

178-184

Citation:

Online since:

January 2013

Export:

Price:

[1] G.H. Zhang, M. Enomoto, N. Hosokawa, M. Kagayama, Y. Adachi, J. Magn. Magn. Mater. 321(2009)24: 4010.

Google Scholar

[2] J.K. Choi, H. Ohtsuka, Y. Xu, W.Y. Choo, Scripta Mater. 43(2000)3: 221.

Google Scholar

[3] H.D. Joo, S.U. Kim, N.S. Shin, Y.M. Koo, Mater. Lett. 43(2000)5-6: 225.

Google Scholar

[4] G.M. Ludtka, R.A. Jaramillo, R.A. Kisner, D.M. Nicholson, J.B. Wilgen, G. Mackiewicz-Ludtka, et al. Scripta Mater. 51(2004)2: 171.

DOI: 10.1016/j.scriptamat.2004.03.029

Google Scholar

[5] R.A. Jaramillo, S.S. Babu, G.M. Ludtka, R.A. Kisner, J.B. Wilgen, G. Mackiewicz-Ludtka., et al. Scripta Mater., 52(2005)6: 461.

DOI: 10.1016/j.scriptamat.2004.11.015

Google Scholar

[6] M. Shimotomai, K. Maruta, K. Mine, M. Matsui, Acta Mater. 51(2003)10: 2921.

Google Scholar

[7] K. Wang, Q. Wang, C.J. Wang, E.G. Wang, C.M. Liu, J.C. He. Mater. Lett., 62(2008)10-11: 1466.

Google Scholar

[8] X.X. Zhang, S.J. Wang, Y.D. Zhang, C. Esling, X. Zhao, L. Zuo,J. Magn. Magn. Mater. 324(2012)7: 1385.

Google Scholar

[9] Y.D. Zhang, C. Esling, M.L. Gong, G. Vincent, X. Zhao, L. Zuo, Scripta Mater., 54(2006): 1897.

Google Scholar

[10] X.L. Zhou, R. Zhou, Y.H. Jiang, Z. Li. Heat Treat. Met., 31(2006)10: 62.

Google Scholar

[11] X.L. Zhou, R. Zhou, Y.H. Jiang, Z. Li. Trans. Mater. Heat Treat. 28(2007)6: 88.

Google Scholar

[12] X.L. Zhou, R. Zhou, Y.H. Jiang, H.X. Shi, Heat Treat. Met., 33(2008)10: 68.

Google Scholar

[13] J.Y. Song, Y.D. Zhang, X. Zhao, L. Zuo, J. Mater. Sci., 43(2008)18: 6105.

Google Scholar

[14] X.L. Zhou, R. Zhou, P.X. Zhang, Y.H. Jiang, Z. Li, H. Zhao, Mater. Sci. Eng. A, 525(2009)1-2: 42.

Google Scholar

[15] Kyung-Tae Park, Sam-Kyu Cho, Jong-Kyo Choi, Pearlite Morphology, 37(1997)5: 661-666.

Google Scholar

[16] H.E. Karaca, I. Karaman, B. Basaran, D.C. Lagoudas, Y.I. Chumlyakow, H.J. Maier, Acta Mater. 55(2007): 4253.

Google Scholar

[17] K. Han, G.D.W. Smith, D.V. Edmonds, Metall. Mater. Trans. A, (2001)32A: 1313.

Google Scholar