A Study of Compatibilization Effect on Physical Properties of Poly (Butylene Succinate) and High Density Polyethylene Blend

Article Preview

Abstract:

The aim of this research is to improve compatibility of PBS/HDPE blend using HDPE-g-MAH as a compatibilizer. The effect of HDPE-g-MAH content on mechanical and thermal properties, and degree of crystallinity of PBS/HDPE/HDPE-g-MAH blend was investigated. The blends were prepared at PBS/HDPE weight ratio of 30/70 and HDPE-g-MAH was used at a content of 2, 4, 6 and 8 part per hundred of PBS and HDPE. The results showed that yield strength and stress at break of PBS/HDPE/HDPE-g-MAH blends insignificantly increased with adding HDPE-g-MAH more than 2 phr. In addition, addition of HDPE-g-MAH to the binary blends led to an increase of elongation at break while Young’s modulus of blends exhibited an insignificant change. The addition of HDPE-g-MAH into PBS/HDPE blend did not affect both flexural modulus and flexural strength. In addition, unnotched impact strength of the blends greatly increased with increasing HDPE-g-MAH content and PBS/HDPE blend containing 8 phr of HDPE-g-MAH were not fractured within the instrument limit. For thermal properties, the presence of HDPE-g-MAH did not affect degradation temperature of PBS domain and HDPE matrix. HDPE-g-MAH of 8 phr markedly influenced the degree of crystallinity of the PBS and HDPE.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

51-56

Citation:

Online since:

May 2013

Export:

Price:

[1] S. Evans, in: GlobalData 2011, European plastics industry, 2012.

Google Scholar

[2] In: Renewable Energy Annual 2007, Energy Information Administration, Washington, DC, 2007, 2007, p.14.

Google Scholar

[3] L. Liu, J. Yu, L. Cheng, W. Qu, Composites Part A, 40 (2009) 669-674.

Google Scholar

[4] S. S. Ray, J. Bandyopadhyay, M. Bousmina, Macromol. Mater. Eng., 292 (2007) 729-747.

Google Scholar

[5] S. Mbarek, M. Jaziri, Y. Chalamet, C. Carrot, J. Appl. Polym. Sci., 117 (2010) 1683-1694.

Google Scholar

[6] D.-H. Kim, K.-Y. Park, J.-Y. Kim, K.-D. Suh, J. Appl. Polym. Sci., 78 (2000) 1017-1024.

Google Scholar

[7] P. Laurienzo, B. Immirzi, M. Malinconico, Macromol. Mater. Eng., 286 (2001) 248-253.

Google Scholar

[8] J.G. Martínez, R. Benavides, C. Guerrero, J. Appl. Polym. Sci., 104 (2007) 560-567.

Google Scholar

[9] B. Boutevin, J. Lusinchi, Y. Pietrasanta, J. Robin, Polym. Eng. Sci. , 36 (1996) 879-884.

DOI: 10.1002/pen.10475

Google Scholar

[10] Zainuddin, A. Sudradjat, M.T. Razzak, F. Yoshii, K. Makuuchi, J. Appl. Polym. Sci., 72 (1999) 1277-1282.

DOI: 10.1002/(sici)1097-4628(19990606)72:10<1277::aid-app6>3.0.co;2-#

Google Scholar

[11] Y. Phua, W. Chow, Z.A.M. Ishak, Express Polym. Lett., 5 (2011).

Google Scholar

[12] S. Sahebian, S.M. Zebarjad, J.V. Khaki, S.A. Sajjadi, J. Mater. Process. Technol., 209 (2009) 1310-1317.

Google Scholar

[13] J.M. Lusinchi, B. Boutevin, N. Torres, J.J. Robin, J. Appl. Polym. Sci., 79 (2001) 874-880.

Google Scholar

[14] K. Sewda, S. Maiti, J. Appl. Polym. Sci., 112 (2009) 1826-1834.

Google Scholar

[15] D.E. El-Nashar, N.A. Maziad, E.M. Sadek, J. Appl. Polym. Sci., 110 (2008) 1929-1937.

Google Scholar

[16] H.-T. Chiu, Y.-K. Hsiao, J. Polym. Res., 13 (2006) 153-160.

Google Scholar

[17] J. Xu, B.-H. Guo, in: Plastics from Bacteria, Springer Berlin Heidelberg, 2010, pp.347-388.

Google Scholar