Memristive Behavior of TiO2 Nanostructures Grown at Different Substrate Positioning by Immersion Method

Article Preview

Abstract:

In this paper, the physical characteristics and memristive behavior of TiO2 nanostructures grown at different substrate positioning by wet chemical solution were investigated. TiO2 thin film as a seed layer for TiO2 nanostructures growth was first deposited on ITO-coated substrate by RF magnetron sputtering method. TiO2 nanostructures were then grown by immersing the TiO2 thin film/ITO/glass sample in 10M NaOH solution at 80 °C while studying the effect of the substrate position to the nanostructure growth and thus its memristive behavior. Characterization on the growth morphology of TiO2 nanostructures was observed using scanning electron microscopy (FESEM). The current-voltage (I-V) measurement of the device was investigated for its memristive behavior. Different growth morphology of TiO2 nanostructures was observed at different substrate positioning. It was found that sample immersed with TiO2 layer facing down the vessel result in the formation of TiO2 nanowires and exhibit better memristive behavior.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

256-259

Citation:

Online since:

September 2013

Export:

Price:

[1] L. O. Chua, Memristor- The missing circuit element, IEEE Trans. Circuit Theory, 18 (1971) 507-519.

DOI: 10.1109/tct.1971.1083337

Google Scholar

[2] R. S. Williams, How we found the missing memristor, IEEE Spectr., 45 (2008) 28-35.

DOI: 10.1109/mspec.2008.4687366

Google Scholar

[3] N. Gergel-Hackett, B. Hamadani, B. Dunlap, J. Suehle, C. Richter, C. Hacker, and D. Gundlach, A flexible solution-processed memristor, IEEE Electron Device Lett. 30 (2009) 706-708.

DOI: 10.1109/led.2009.2021418

Google Scholar

[4] T. Prodromakis, K. Michelakis and C. Toumazou, Switching mechanisms in microscale memristors, IET Elec. Letters 46 (2010) 63-65.

DOI: 10.1049/el.2010.2716

Google Scholar

[5] K. Miller, K.S. Nalwa, A. Bergerud, N.M. Neihart and S. Chaudhary, Memristive behavior in thin anodic titania, IEEE Electron Device Lett., (2010) 737-739.

DOI: 10.1109/led.2010.2049092

Google Scholar

[6] Muneer M. Ba-Abbad, Abdul Amir H. Kadhum, Abu Bakar Mohamad, Mohd S. Takriff, Kamaruzzaman Sopian, Synthesis and catalytic activity of TiO2 nanoparticles for photochemical oxidation of concentrated chlorophenols under direct solar radiation, Int. J. Electrochem. Sci., 7 (2012) 4871 – 4888.

DOI: 10.1016/s1452-3981(23)19588-5

Google Scholar

[7] A. Kumar, A. R. Madaria, and C. Zhou, Growth of aligned single-crystalline rutile TiO2 nanowires on arbitrary substrates and their application in dye-sensitized solar cells, J. Phys. Chem. C. 114 (2010) 7787–7792.

DOI: 10.1021/jp100491h

Google Scholar

[8] J. Wu, S. Lo, K. Song, B. K. Vijayan, W. Li, K. A. Gray, V. P. Dravid, Growth of rutile TiO2 nanorods on anatase TiO2 thin films on Si-based substrates, J. Mater. Res. 26 (2011)1646-1652.

DOI: 10.1557/jmr.2011.190

Google Scholar

[9] F.K. Yam, K.P. Beh, S.W. Ng, Z. Hassan, The effects of morphological changes on the vibrational properties of self-organized TiO2 nanotubes, Thin Solid Films, 520 (2011) 807-812.

DOI: 10.1016/j.tsf.2011.07.071

Google Scholar

[10] X. Chen, M. Schriver, T. Suen, S.S. Mao, Fabrication of 10nm diameter TiO2 nanotube arrays by titanium anodization, Thin Solid Films, 515 (2007)8511-8514.

DOI: 10.1016/j.tsf.2007.03.110

Google Scholar

[11] S. Xu and Z. L Wang, One-dimensional ZnO nanostructures: solution growth and functional properties, Nano Research, 4 (2011) 1013-1098.

DOI: 10.1007/s12274-011-0160-7

Google Scholar

[12] D. B. Strukov, G. S. Sniker, D. R. Stewart and R. S. Williams, The missing memristor found, Nature, 453 (2008) 80-83.

DOI: 10.1038/nature06932

Google Scholar