Biomedical Perspectives of Polyaniline Based Biosensors

Article Preview

Abstract:

Electrically conducting polymers (ECPs) are finding applications in various fields of science owing to their fascinating characteristic properties such as binding molecules, tuning their properties, direct communication to produce a range of analytical signals and new analytical applications. Polyaniline (PANI) is one such ECP that has been extensively used and investigated over the last decade for direct electron transfer leading towards fabrication of mediator-less biosensors. In this review article, significant attention has been paid to the various polymerization techniques of polyaniline as a transducer material, and their use in enzymes/biomolecules immobilization methods to study their bio-catalytic properties as a biosensor for potential biomedical applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

173-216

Citation:

Online since:

September 2013

Export:

Price:

[1] K. Radhapyari, P. Kotoky, M.R. Das, R. Khan, Graphene-polyaniline nanocomposite based biosensor for detection of antimalarial drug artesunate in pharmaceutical formulation and biological fluids, Talanta 111 (2013) 47-53.

DOI: 10.1016/j.talanta.2013.03.020

Google Scholar

[2] R.-S. Saberi, S. Shahrokhian, G. Marrazza, Amplified electrochemical DNA based on polyaniline film and gold nanoparticles, Electroanalysis 25 (2013) 1373-1380.

DOI: 10.1002/elan.201200434

Google Scholar

[3] V. Perumal, U. Hashim, Advances in biosensors: Principle, Architecture and Applications, Institue of Nano Electrical Engineering, University Malaysia Perlis (UniMAP), Perlis, Malaysia 2013.

DOI: 10.35940/ijrte.d5426.118419

Google Scholar

[4] E. Iwuoha, A. Al-Ahmed, M. Sekota, T. Waryo, P. Baker, in : Jerry Atwood and Jonathan Steed (Ed.), Encyclopedia of Supramolecular Chemistry, 1:1, Taylor and Francis, New York, USA, 2007, pp.1-18.

DOI: 10.1081/e-esmc-120012793

Google Scholar

[5] C.R. Lowe, B.F.Y.Y. Hin, D.C. Cullen, S. E. Evans, L.D.S. Stephens, P. Maynard, Biosensors, J. Chromatogr. A 510 (1990) 347-354.

DOI: 10.1016/s0021-9673(01)93769-0

Google Scholar

[6] B.M. Paddle, Biosensors for chemical and biological agents of defence interest, Biosens. & Bioelectron. 11 (1996) 1079-1113.

DOI: 10.1016/0956-5663(96)82333-5

Google Scholar

[7] G. Urban, A. Jachimowicz, F. Kohl, H. Kuttner, F. Olcaytug, H. Kamper, F. Pittner, E. Mann-Buxbaum, T. Schalkhammer, O. Prohaska, M. Schonauer, High-resolution thin-film temperature sensor arrays for medical applications, Sens. Actuators A 22 (1990) 650-654.

DOI: 10.1016/0924-4247(89)80051-2

Google Scholar

[8] J. Švorc, S. Miertuš, J. Katrlík, M. Stred¢anský, Composite Transducers for Amperometric Biosensors. The Glucose Sensor, Anal. Chem. 69 (1997) 2086-2090.

DOI: 10.1021/ac9609485

Google Scholar

[9] W. Tan, M. J. Donovan, J. Jiang, Aptamers from cell-based selection for bioanalytical applications, Chem. Rev. 113 (2013) 2842-2862.

DOI: 10.1021/cr300468w

Google Scholar

[10] X.-H. Zhao, L. Gong, X.-B. Zhang, B. Yang, T. Fu, R. Hu, W. Tan, R. Yu, Versatile DNAzyme- based amplified biosensing platforms for nucleic acid, protein, and enzyme activity detection, Anal. Chem. 85 (2013) 3614-3620.

DOI: 10.1021/ac303457u

Google Scholar

[11] E. Kress-Rogers, Handbook of Biosensors and Electronic Noses: Medicine, Food and the Environment, CRC Press, Boca Raton, USA, 1996.

Google Scholar

[12] C.L. Cooney, J.C. Weaver, S.R. Tannebaum, S.R. Faller, D.V. Shields, M. Jahnke, in: E.K. Pye, L.B. Wingard Jnr. (Eds:), Enzyme Engineering, Plenum, New York 1974, pp.411-417.

Google Scholar

[13] A.E.G. Cass, G. Davis, D.G. Francis, H.A.O. Hill, W.J. Aston, I.J. Higgins, E.V. Plotkin, L.D.L. Scott, A.P.F. Turner, Ferrocene-Mediated Enzyme Electrode for Amperometric Determination of Glucose, Anal. Chem. 56 (1984) 667-671.

DOI: 10.1021/ac00268a018

Google Scholar

[14] A.P.F. Turner, I. Karube, G.S. Wilson, Biosensors: Fundamentals and Application, Oxford University Press, Oxford 1987, p.770.

Google Scholar

[15] M. Ates, A review study of (bio)sensor systems based on conducting polymers, Mater. Sci. Eng. C 33 (2013) 1853- 1859.

Google Scholar

[16] H. Shirakwa, E.J. Lowis, A.G. MacDairmid, C.K. Chiang, A.J. Heeger, Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x , Chem. Commun. 16 (1977) 578-580.

DOI: 10.1039/c39770000578

Google Scholar

[17] A.J. Heeger, N.S. Sariciffici, E.B. Namdas, Semiconducting and metallic polymers, Oxford university press, Oxford, UK, 2010.

Google Scholar

[18] J.C. Chiang, A.G. MacDiarmid, 'Polyaniline': Protonic acid doping of the emeraldine form to the metallic regime, Synth. Met. 13 (1986) 193-205.

DOI: 10.1016/0379-6779(86)90070-6

Google Scholar

[19] H. Naarmann, P. Strohriegel, in Handbook of Polymer Synthesis, Part- B (Ed: H.R. Kricheldorf), Marcel Dekker, New York 1992, p.1390.

Google Scholar

[20] R. Kiebooms, R. Menon, K. Lee, in HandBook of Advance Electronic and Photonic Materials and Devices, (Ed: H. S. Nalwa), Academic Press, CA, USA 2001, Vol. 8 p.32.

Google Scholar

[21] R.V. Gregoy, in: T.A. Skotheim, R.L. Elsenbaumer, J.R. Reynolds (Eds.), Handbook of Conducting Polymers, Marcel Dekker, New York 1998, p.446.

Google Scholar

[22] K. Li, B. Liu, water soluble comjugated polymers as the platform for protein sensors, Polym. Chem. 1 (2010) 252-259.

Google Scholar

[23] M. Goh, S. Matsushita, K. Akagi, From helical polyacetylene to helical graphite: synthesis in the chiral nematic liquid crystal field and morphology-retaining carbonization, Chem. Soc. Rev. 39 (2010) 2466-2476.

DOI: 10.1039/b907990b

Google Scholar

[24] R. Rajesh, T. Ahuja, D. Kumar, Recent progress in the development of nano-structured conducting polymer/nanocomposites doe sensor applications, Sens. Actuators, B 136 (2009) 275-286.

DOI: 10.1016/j.snb.2008.09.014

Google Scholar

[25] B. Guo, L. Glavas, A-C. Albertsson, Biodegradable and electrically conducting polymers for biomedical applications, Prog. Polym. Sci. (2013), (In press).

Google Scholar

[26] H.N.M.E. Mamud, A. Kassim, Fabrication and characterization of organic semiconductor for electromagnetic interference shielding material, J. Polym. Eng. 31 (2011) 319-322.

Google Scholar

[27] S. Zahn, G.S. Lal, W. F. Burgoyne, Jr, K.E. Minnich, A.F. Nordquist, L.M. Robeson, F.J. Waller, Fluorinated alkyl substituted-thieno[3,4-B] thiophene monomers and polymers therefrom, US Patent 7,572,879 B2, 2009.

Google Scholar

[28] G.A. Snook, P. Kao, A.S. Best, Conducting-polymer-based supracapacitor devices and electrodes, J. Power Sources 196 (2011) 1-12.

DOI: 10.1016/j.jpowsour.2010.06.084

Google Scholar

[29] A. Ohira, T.M. Swager, Ordering of poly(p-phenylene ethylene)s in liquid crystals, Macromolecules 40 (2007) 19-25.

DOI: 10.1021/ma0620262

Google Scholar

[30] A. Guiseppi-Elie, G.G. Wallace, T. Matsue, in: T.A. Skotheim (Ed.), Handbook of Conducting Polymers, Marcel Dekker, New York 1997, pp.963-992.

Google Scholar

[31] E. Stavrinidou, P. Leleux, H. Rajaona, M. Fiocchi, S. Sanaur, G.G. Malliaras, A simple model for ion injection and transport in conducting polymers, J. Appl. Phys. 113 (2013) 244501- 244506.

DOI: 10.1063/1.4812236

Google Scholar

[32] M. Rehahn, T. Schwalm, S. Immel, S. Nickel, Method for producing (electro) luminescent, photoactive or electrically (semi) conducting polymers, US Paten Appl. 20130065358.

Google Scholar

[33] N. Paul, M. Muller, A. Paul, E. Guenther, I Lauermann, P. Muller-Buschbaum, M.C. Lux Stiner, Molecular imprinted conducting polymers for trafficking of nerotransmitters at solid-liquid interface, Soft Matter 9 (2013) 1364-1371.

DOI: 10.1039/c2sm26896e

Google Scholar

[34] M. Umana, J. Waller, Protein-modified electrodes. The glucose oxidase/polypyrrole system, Bottom of FormAnal. Chem. 58 (1986) 2979-2983.

DOI: 10.1021/ac00127a018

Google Scholar

[35] A. Ivaska, Analytical applications of conducting polymers, Electroanalysis 3 (1991) 247-254.

Google Scholar

[36] C.E.D. Chidsey, R.W. Murray, Electroactive Polymers and Macromolecular Electronics Bottom of Form, Science 231 (1986) 25-31.

DOI: 10.1126/science.231.4733.25

Google Scholar

[37] R.A. Hillman, Reaction and Application of Polymer Modified Electrodes in Electrochemical Science and Technology of Polymers (Ed: R.G. Linford) Elsevier, New York 1987, p.241.

Google Scholar

[38] G.K. Candler, D. Pletcher, The Electrochemistry of Conducting Polymers in Electrochemistry, D. Pletcher (Ed), Vol.10, Royal Society of Chemistry, London 1993, p.117.

DOI: 10.1039/9781847559951-00117

Google Scholar

[39] P.N. Bartlett, J.M. Cooper, A review of the immobilization of enzymes in electropolymerized films, J. Electoanal. Chem. 362 (1993) 1-12.

Google Scholar

[40] M. Aizawa, S. Yabuki, H. Shinohara, in: G. Dryhurst, K. Niki (Eds.), Redox Chemistry and Interfacial Behavior of Biological Molecules, Plenum Press, New York 1988, p.173.

Google Scholar

[41] S.B. Adeloju, G.G. Wallace, Conducting polymers and the bioanalytical sciences: new tools for biomolecular communications. A review, Analyst 121 (1996) 699-703.

DOI: 10.1039/an9962100699

Google Scholar

[42] A. Heller, Electrical wiring of redox enzymes, Acc. Chem. Res. 23 (1990) 128-134.

DOI: 10.1021/ar00173a002

Google Scholar

[43] A. Boyle, E.M. Geniès, M. Lapkowski, Application of the electronic conducting polymers as sensors: Polyaniline in the solid state for detection of solvent vapours and polypyrrole for detection of biological ions in solutions, Synth. Met. 28 (1989) 769-774.

DOI: 10.1016/0379-6779(89)90602-4

Google Scholar

[44] G. Bidan, Electroconducting conjugated polymers: New sensitive matrices to build up chemical or electrochemical sensors. Sens. Actuators, B 6 (1992) 45-56.

DOI: 10.1016/0925-4005(92)80029-w

Google Scholar

[45] A.Q. Contractor, T.N. Sureshkumar, R. Narayanan, S. Sukeerthi, R. Lal, R.S. Srinivasa, Conducting polymer-based biosensors, Electrochim. Acta 39 (1994) 1321-1324.

DOI: 10.1016/0013-4686(94)e0054-4

Google Scholar

[46] K.S.V. Santhanam, Conducting polymers for biosensors: Rationale based on models, Pure Appl. Chem. 70 (1998) 1259-1262.

DOI: 10.1351/pac199870061259

Google Scholar

[47] W. Schuhmann, Conducting polymer based amperometric enzyme electrodes, Mikrochim. Acta 121 (1995) 1-29.

DOI: 10.1007/bf01248237

Google Scholar

[48] C. Kranz, H. Wohlschläger, H.L. Schmidt, W. Schuhmann, Controlled electrochemical preparation of amperometric biosensors based on conducting polymer multilayers, Electroanalysis 10 (1998) 546-552.

DOI: 10.1002/(sici)1521-4109(199807)10:8<546::aid-elan546>3.0.co;2-#

Google Scholar

[49] P.N. Bartlett, P.R. Birkin, The application of conducting polymers in biosensors, Synth. Met. 61 (1993) 15-21.

Google Scholar

[50] M.V. Deshpande, D. P. Amalnerkar, Biosensors prepared from electrochemically-synthesized conducting polymers, Prog. Polym. Sci. 18 (1993) 623-649.

DOI: 10.1016/0079-6700(93)90005-w

Google Scholar

[51] S. Cosnier, Biomolecule immobilization on electrode surfaces by entrapment or attachment to electrochemically polymerized films. A review, Biosens. Bioelectron. 14 (1999) 443-456.

DOI: 10.1016/s0956-5663(99)00024-x

Google Scholar

[52] R.A. Bull, F.R. Fan, A.J. Bard, Polymae films on electrodes, J. Electrochem. Soc. 130 (1983) 1636-1638.

Google Scholar

[53] T.W. Lewis, G.G. Wallace, M.R. Smyth, Electrofunctional polymers: their role in the development of new analytical systems, Analyst 124 (1999) 213-219.

DOI: 10.1039/a808015a

Google Scholar

[54] W. Lu, H. Zhao, G.G. Wallace, Pulsed electrochemical detection of proteins using conducting polymer based sensors, Anal. Chim. Acta 315 (1995) 27-32.

DOI: 10.1016/0003-2670(95)00256-y

Google Scholar

[55] M.S. Wrighton, Surface Functionalization of Electrodes with Molecular Reagents, Science 231 (1986) 32-37.

Google Scholar

[56] H. Zhao, W.E. Price, G.G. Wallace, Effect of the counterion employed during synthesis on the properties of polypyrrole membranes, J. Membr. Sci. 87 (1994) 47-56.

DOI: 10.1016/0376-7388(93)e0053-g

Google Scholar

[57] J.C. Cooper, E.A.H. Hall, Electrochemical response of an enzyme-loaded polyaniline film, Biosens. Bioelectron.7 (1992) 473-485.

Google Scholar

[58] P.R. Teasdale, G.G. Wallace, Molecular recognition using conducting polymer: basis of an electrochemical sensing technology-plenary lecture, Analyst 118 (1993) 329-334.

DOI: 10.1039/an9931800329

Google Scholar

[59] A.G. MacDiarmid, Synthetic metals: a novel role for organic polymers, Synth. Met. 125 (2002) 11-22.

Google Scholar

[60] A.G. MacDiarmid, Polyaniline and polypyrrole: Where are we headed?, Synth. Met. 84 (1997) 27-34.

DOI: 10.1016/s0379-6779(97)80658-3

Google Scholar

[61] J. Bai, S. Beyer, D. Trau, Conjugated polymers for Biosensor devices, Comprehensive Biomaterials 3 (2011) 529-556.

DOI: 10.1016/b978-0-08-055294-1.00121-5

Google Scholar

[62] E.I. Iwuoha, D. Saenzde de Villaerde, N.P. Garcia, M. R.Smyth, J.M. Pingarron, Reactivities of organic phase biosensors. 2. The amperometric behaviour of horseradish peroxidase immobilised on a platinum electrode modified with an electrosynthetic polyaniline film, Biosen. Bioelectro. 12 (1997) 749-761.

DOI: 10.1016/s0956-5663(97)00042-0

Google Scholar

[63] W.-S. Huang, B.D. Humphrey, A.G. MacDiarmid, Polyaniline, a novel conducting polymer. Morphology and chemistry of its oxidation and reduction in aqueous electrolytes, Faraday Trans. 82 (1986) 2385-2400.

DOI: 10.1039/f19868202385

Google Scholar

[64] A.J. Heeger, Semiconducting and metallic polymers: the fourth generation of polymeric materials, Synth. Met. 125 (2002) 23-42.

Google Scholar

[65] E.W. Paul, A.J. Ricco, M.S. Wrighton, electrochemical potential and the fabrication of polyaniline-based microelectronic devices, J. Phys. Chem. 1985, 89 (8) (1985), 1441-1447.

DOI: 10.1021/j100254a028

Google Scholar

[66] A.A. Pud, Stability and degradation of conducting polymers in electrochemical systems, Synth. Met. 66 (1994) 1-18.

Google Scholar

[67] A.A. Syed, M.K. Dinesan, Review: Polyaniline—A novel polymeric material, Talanta 38 (8) (1991) 815-837.

DOI: 10.1016/0039-9140(91)80261-w

Google Scholar

[68] J. Luo, S. Jiang, Y. Wu, M. Chen, X. Liu, Synthesis of stable aqueous dispersion of grapheen/polyaniline composite mediated by polystyrene sulfonic acid, J. Polym. Sci., Part A: Polym. Chem. 50 (2012) 4888-4894.

DOI: 10.1002/pola.26316

Google Scholar

[69] P.M. Ndangilli, T.T. Waryo, M. Muchindu, P.G.L. Baker, C.J. Ngila, E.I. Iwuoha, Ferrocenium hexafluorophosphate-induced nanofibrillarity of polyaniline-polyvinyl sulfonate electropolymer and application in an amperometric enzyme biosensor, Electrochimica Acta, 55 (2010) 4267- 4273.

DOI: 10.1016/j.electacta.2009.04.058

Google Scholar

[70] P.D. Gaikwad, D.J. Shirale, V.K. Gade, P.A. Savale, P.K. Kakde, H.J. Kharat, M.D. Shirsat, Potentiometric study of polyaniline film synthesized with various dopants and composite dopants: A comparative study. Bull. Mater. Sci. 29 (2006) 417-420.

DOI: 10.1007/bf02704145

Google Scholar

[71] S. Singh, P.R. Solanki, M.K. Pandey, B.D. Malhotra, Cholesterol biosensor based on cholesterol esterase, cholesterol oxidase and peroxidase immobilized onto conducting polyaniline films, Sens. Actuators B 115 (2006) 534-541.

DOI: 10.1016/j.snb.2005.10.025

Google Scholar

[72] K. Grennan, A.J. Killard, C.J. Hanson, A.A. Cafolla, M.R. Smyth, Optimisation and characterisation of biosensors based on polyaniline, Talanta 68 (2006) 1591-1600.

DOI: 10.1016/j.talanta.2005.08.036

Google Scholar

[73] T.F. Otero, V. Olazabal, Electrogeneration of polypyrrole in presence of polyvinylsulfonate. Kinetic study, Electrochim. Acta 41 (1996) 213-220.

DOI: 10.1016/0013-4686(95)00308-2

Google Scholar

[74] M. Mazur, M. Tagowska, B. Palys, K. Jackowaska, Template synthesis of polyaniline and poly(2-methoxyaniline) nanotubes: comparison of the formation mechanisms, Electrochem. Commun. 5 (2003) 403-407.

DOI: 10.1016/s1388-2481(03)00078-x

Google Scholar

[75] D.D. Borole, U.R. Kapadl, P.P. Muhulikar, D.G. Hundiwale, Glucose oxidase electrodes of polyaniline, poly (o-anisidine) and their copolymer as a biosensor: a cooperating study, J. Mater. Sci. 43 (2007) 4947-4953.

DOI: 10.1007/s10853-006-0164-y

Google Scholar

[76] Y. Xian, F. Liu, L. Febg, F. Wu, L. Wang, L. Jin, Nanoelectrode ensembles based on conductive polyaniline/poly(acrylic acid) using porous sol-gel films as template, Electrochem. Commun. 9 (2007) 773-780.

DOI: 10.1016/j.elecom.2006.11.017

Google Scholar

[77] X. Pan, S. Zhou, C. Chen, J. Kan, Preparation and properties of an uricase biosensor based on copolymer of o-aminophenol-aniline, Sens. Actuators B 113 (2006) 329-334.

DOI: 10.1016/j.snb.2005.03.086

Google Scholar

[78] H. Zhou, H. Cheng, S. Luo, J. Chen, W. Wei, Y. Kuang, Glucose biosensor based on platinum microparticles dispersed in nano-fibrous polyaniline, Biosens. Bioelectron. 20 (2005) 1305-1311.

DOI: 10.1016/j.bios.2004.04.024

Google Scholar

[79] Y. Zou, L. X. Sun, F. Xu, Biosensor based on polyaniline–Prussian Blue/multi-walled carbon nanotubes hybrid composites, Biosen. Bioelectro. 22 (2007) 2669-2674.

DOI: 10.1016/j.bios.2006.10.035

Google Scholar

[80] Y. Xian., Y. Hu, F. Liu, Y. Xian, H. Wang, L. Jin, Glucose biosensor based on Au nanoparticles–conductive polyaniline nanocomposite, Biosen. Bioelectro. 21 (2006) 1996-2000.

DOI: 10.1016/j.bios.2005.09.014

Google Scholar

[81] X. Pan, J. Kan, L. Yuan, Polyaniline glucose oxidase biosensor prepared with template process, Sens. Actuators B 102 (2004) 325-330.

DOI: 10.1016/j.snb.2004.04.090

Google Scholar

[82] Y. Jiang, A. Wang, J. Kan, Selective uricase biosensor based on polyaniline synthesized in ionic liquid, Sens. Actuators B 124 (2007) 529-534.

DOI: 10.1016/j.snb.2007.01.016

Google Scholar

[83] D.F. Zielinska, F. Gnad, K. Schropp, J.R. Wisniewski, M. Mann, Mapping N-Glycosylation sites across seven evolutionarily distant species reveals a divergent substrate proteome despite a common core machinery, Molecular Cell 46 (2012) 542-548.

DOI: 10.1016/j.molcel.2012.04.031

Google Scholar

[84] M. Rehm, J.H.M. Prehn, Systems modeling methodology for the analysis of apoptosis signal transduction and cell death decisions, Methods 61 (2013) 165-173.

DOI: 10.1016/j.ymeth.2013.04.007

Google Scholar

[85] S. Singh, P.R. Solanki, M.K. Pandey, B.D. Malhotra, Covalent immobilization of cholesterol esterase and cholesterol oxidase on polyaniline films for application to cholesterol biosensor, Analy. Chimica Acta 568 (2006) 126-132.

DOI: 10.1016/j.aca.2005.10.008

Google Scholar

[86] C. Lie, J. Deng, Hydrogen peroxide sensor based on coimmobilized Methylene Green and Horseradish Peroxidase in the Same Montmorillonite-modified Bovine Serum Albumin-Glutaraldehyde Matrix on a Glassy Carbon Electrode Surface. Annal. Chem. 68 (1996) 3348-3349.

DOI: 10.1021/ac960291n

Google Scholar

[87] K. Arora, N. Prabhakar, S. Chand, B.D. Malhotra, Escherichia coli Genosensor Based on Polyaniline, Anal.Chimica Acta 79 (2007) 6152-6158.

DOI: 10.1021/ac070403i

Google Scholar

[88] N. German, A. Ramanavicius, J. Voronovic, A, Ramanaviciene, Glucose biosensor based on glucose oxidase and gold nanoparticles of different sizes covered by polypyrrole layer, Colloids Surf., A 413 (2012) 224-230

DOI: 10.1016/j.colsurfa.2012.02.012

Google Scholar

[89] J. Wang, Conducting polymers for biosensors: Rationale based on models Glucose biosensors: 40 years of Advance and Challenges, Electroanalysis 13 (2001) 983-988.

DOI: 10.1002/1521-4109(200108)13:12<983::aid-elan983>3.0.co;2-#

Google Scholar

[90] J. Wang, Electrochemical glucose biosensors, Chem. Rev. 108 (2007) 814-825.

Google Scholar

[91] L. Clark Jr., C. Lyons, Electrode systems for continuous monitoring in cardiovascular surgery, Ann. Ny Acad. Sci. 102 (1962) 29-45.

Google Scholar

[92] V. Mazeiko, A.Kausaite-Minkstimiene, A. Ramanaviciene, Z. Balevicius, A. Ramanavicius, Gold nanoparticle and conducting polymer-polyaniline-based nanocomposites for glucose biosensor design, Sensor and Actuators B: Chemical, 2013, (In press).

DOI: 10.1016/j.snb.2013.03.140

Google Scholar

[93] D.T. Hoa, T.N. Suresh Kumar, N.S. Punekar, R.S. Srinivasa, R. Lal, A.Q. Contractor, Biosensor Based on Conducting Polymers, Anal. Chem. 64 (1992) 2645-2646.

DOI: 10.1021/ac00045a031

Google Scholar

[94] J. Losada, M.P.G. Armada, A glucose amperometric sensor based on covalent immobilization of glucose oxidase in poly-2-aminoaniline film via chloranil on platinized platinum electrode, Electroanalysis 9 (1997) 1416-1421.

DOI: 10.1002/elan.1140091808

Google Scholar

[95] D.D. Borole, U.R. Kapadi, P.P. Mahulikar, D.G. Hundiwale, Glucose oxidase electrodes of polyaniline, poly(o-toluidine) and their copolymer as a biosensor: a comparative study, Polym. Adv. Technol. 15 (2004) 306-312.

DOI: 10.1002/pat.474

Google Scholar

[96] H. Xue, Z. Shen, C. Li, Improved selectivity and stability of glucose biosensor based on in situ electropolymerized polyaniline–polyacrylonitrile composite film, Biosens. Bioelectron. 20 (2005) 2330-2334.

DOI: 10.1016/j.bios.2004.07.018

Google Scholar

[97] R. Garjonyte, A. Malinauskas, Amperometric glucose biosensors based on Prussian Blue– and polyaniline–glucose oxidase modified electrodes, Biosens. Bioelectron. 15 (2000) 445-451.

DOI: 10.1016/s0956-5663(00)00101-9

Google Scholar

[98] H. Xue, Z. Shen, Y. Li, Polyaniline–polyisoprene composite film based glucose biosensor with high permselectivity, Synth. Met. 124 (2001) 345-356.

DOI: 10.1016/s0379-6779(01)00381-2

Google Scholar

[99] X.H. Xu, G.L. Ren, J. Cheng, Q. Liu, D.G. Li, Q. Chen, Self-assembly of polyaniline-grafted chitosan/glucose oxidase nanolayered films for electrochemical biosensor applications, J. Mater. Sci. 41 (2006) 4974-4977.

DOI: 10.1007/s10853-006-0118-4

Google Scholar

[100] D. Shan, S. Wang, Y. He, H. Xue, Amperometric glucose biosensor based on in situ electropolymerized polyaniline/poly(acrylonitrile-co-acrylic acid) composite film, Mater. Sci. Eng., C 28 (2008) 213-217.

DOI: 10.1016/j.msec.2006.12.003

Google Scholar

[101] H. Sangodkar, S. Sukeerthi, R.S. Srinivasa, R. Lal, A.Q. Contractor, A Biosensor Array Based on Polyaniline, Anal. Chem. 68 (1996) 779-783.

DOI: 10.1021/ac950655w

Google Scholar

[102] S. Sukeerthi, A.Q. Contractor, Molecular Sensors and Sensor Arrays Based on Polyaniline Microtubules, Anal. Chem. 71 (1999) 2231-2236.

DOI: 10.1021/ac9810213

Google Scholar

[103] A. Efthekhari, Electropolymerization of aniline onto passivated substrate and its application for preparation of enzyme-modified electrode, Synth. Met. 145 (2004) 211-216.

DOI: 10.1016/j.synthmet.2004.05.016

Google Scholar

[104] J. Dumont, G. Fortier, Behavior of glucose oxidase immobilized in various electropolymerized thin films, Biotech. Bioeng. 49 (1996) 544-552.

DOI: 10.1002/(sici)1097-0290(19960305)49:5<544::aid-bit7>3.0.co;2-j

Google Scholar

[105] A.A. Karkyin, O.A. Bobrova, L.V. Lukachova, E.E. Karyakina, Potentiometric biosensors based on polyaniline semiconductor films, Sens. Actuators B 33 (1996) 34-38.

DOI: 10.1016/0925-4005(96)01929-6

Google Scholar

[106] M.M. Verghes, K. Ramanathan, S.M. Ashraf, B.D. Malhotra, Enhanced loading of glucose oxidase on polyaniline films based on anion exchange, J. Appl. Poly. Sci. 70 (1998) 1447-1453.

DOI: 10.1002/(sici)1097-4628(19981121)70:8<1447::aid-app3>3.0.co;2-4

Google Scholar

[107] M. Gerard, B.D. Malhotra, Application of polyaniline as enzyme based biosensor, Current Appl. Physics 5 (2005) 174-177.

DOI: 10.1016/j.cap.2004.06.016

Google Scholar

[108] X. Chen, Z. Chen, R. Tian, W. Yan, C. Yao, Glucose biosensor based on three dimensional macroporous self-doped polyaniline/Prussian biocomponent film, Analytical Chimica Acta, 723 (2012) 94-100.

DOI: 10.1016/j.aca.2012.02.032

Google Scholar

[109] S. Myler, F. Davis, S.D. Collyer. S.P.J. Higson, Sonochemically fabricated microelectrode arrays for biosensors—part II: Modification with a polysiloxane coating, Biosens. Bioelectron. 20 (2004) 408-412.

DOI: 10.1016/j.bios.2004.02.009

Google Scholar

[110] A. Ramanavičius, A. Ramanavičiene, A. Malinauskas, Electrochemical sensors based on conducting polymer—polypyrrole, Electrochim. Acta 51 (2006) 6025-6037.

DOI: 10.1016/j.electacta.2005.11.052

Google Scholar

[111] E. Katz, I. Willner, Integrated nanoparticle- biomolecule hybrid system: synthesis, properties and applications, Angew. Chem. Int. Ed. 43 (2004) 6042-6108.

DOI: 10.1002/anie.200400651

Google Scholar

[112] H. Chang, Y. Yuan, N. Shi, Y. Guan, Electrochemical DNA Biosensor Based on Conducting Polyaniline Nanotube Array, Anal. Chem. 79 (2007) 5111-5115.

DOI: 10.1021/ac070639m

Google Scholar

[113] J. Wu, Y. Zou, Xiaolili, H. Liu, G. Shen, R. Yu, A biosensor monitoring DNA hybridization based on polyaniline intercalated graphite oxide nanocomposite, Sens. Actuators B 104 (2005) 43-49.

DOI: 10.1016/j.snb.2004.04.097

Google Scholar

[114] Y. Bo, H. Yang, Y. Hu, T. Yao, S. Huang, A novel electrochemical DNA biosensor based on graphene and polyaniline nanowires, Electrochimica Acta, 56 (2011) 2676-2681.

DOI: 10.1016/j.electacta.2010.12.034

Google Scholar

[115] Y. Ma, S. R. Ali, A. S. Dodoo, H. He, Enhanced sensitivity for biosensors: Multiple functions of DNA-wrapped signal-walled carbon nanotubes in self-doped polyaniline nanocomposiyes, J. Phys. Chem. B 110 (2006) 16359-16365.

DOI: 10.1021/jp0614897

Google Scholar

[116] S.R. Ali, Y. Ma, R.R. Parajuli, Y. Balogun, W.Y.C. Lai, H. He, A Nonoxidative Sensor Based on a Self-Doped Polyaniline/Carbon Nanotube Composite for Sensitive and Selective Detection of the Neurotransmitter Dopamine, Anal. Chem. 79 (2007) 2583-2587.

DOI: 10.1021/ac062068o

Google Scholar

[117] N. Zhu, Z. Chang, P. He, Y. Fang, Electrochemically fabricated polyaniline nanowire-modified electrode for voltammetric detection of DNA hybridization, Electrochim. Acta 51 (2006) 3758-3762.

DOI: 10.1016/j.electacta.2005.10.038

Google Scholar

[118] K. Arora, N. Prabhakar, S. Chand, B.D. Malhotra, Ultrasensitive DNA hybridization biosensor based on polyaniline, Biosen. Bioelectro. 23 (2007) 613-620.

DOI: 10.1016/j.bios.2007.07.010

Google Scholar

[119] H.A. Harper, Review of Physiological Chemistry, 16th edition, Lange Medical Publications, San Francisko, CA, 1977.

Google Scholar

[120] Y.C. Luo, J.S. Do, Urea biosensor based on PANi(urease)-Nafion®/Au composite electrode, Biosens. Bioelectron. 20 (2004) 15-23.

DOI: 10.1016/j.bios.2003.11.028

Google Scholar

[121] J. Kan, X. Pan, C. Chen, Polyaniline–uricase biosensor prepared with template process, Biosens. Bioelectron. 19 (2004) 1635-1640.

DOI: 10.1016/j.bios.2003.12.032

Google Scholar

[122] P.C. Pandey, G. Singh, Tetraphenylborate doped polyaniline based novel pH sensor and solid-state urea biosensor, Talanta 55 (2001) 773-782.

DOI: 10.1016/s0039-9140(01)00505-7

Google Scholar

[123] W.J. Cho, H.-J. Huang, An Amperometric Urea Biosensor Based on a Polyaniline-Perfluorosulfonated Ionomer Composite Electrode, Anal. Chem. 70 (1998) 3946-3951.

DOI: 10.1021/ac980004a

Google Scholar

[124] K. Arora, G. Sumana, V. Saxena, R.K. Gupta, S.K. Gupta, J.V. Yakhmi, M.K. Pandey, S. Chand, B. D. Malhotra, Improved performance of polyaniline-uricase biosensor, Anal. Chim. Acta 594 (2007) 17-23.

DOI: 10.1016/j.aca.2007.04.068

Google Scholar

[125] A.A. Karyakin, M. Vuki, L.V. Lukachova, E.E. Karyakina, A.V. Orlov, G.P. Karpachova, J. Wang, Processible polyaniline as an advanced potentiometric pH transducer application to biosensors, Anal. Chem. 71 (1999) 2534-2540.

DOI: 10.1021/ac981337a

Google Scholar

[126] M.M. Castillo-Ortega, D.E. Rodriguez, J.C. Encinas, M. Plascencia, F.A. Méndz-Velarde, R. Olayo, Conductometric uric acid and urea biosensor prepared from electroconductive polyaniline–poly(n-butyl methacrylate) composites, Sens. Actuators, B 85 (2002) 19-25.

DOI: 10.1016/s0925-4005(02)00045-x

Google Scholar

[127] E.I. Iwuoha, M.R. Smyth, M.E.G. Layons, Organic phase enzyme electrodes: kinetics and analytical applications, Biosen. Bioelectro. 12 (1997) 53-75.

DOI: 10.1016/0956-5663(96)89089-0

Google Scholar

[128] N.G.R. Mathebe, A. Morrin, E.I. Iwuoha, Electrochemistry and scanning electron microscopy of polyaniline/peroxidase-based biosensor, Talanta 64 (2004) 115-120.

DOI: 10.1016/j.talanta.2003.11.050

Google Scholar

[129] C.C. Chen, Y. Gu, Enhancing the sensitivity and stability of HRP/PANI/Pt electrode by implanted bovine serum albumin, Biosenos. Bioelectro. 23 (2008) 765-770.

DOI: 10.1016/j.bios.2007.08.014

Google Scholar

[130] X. Kang, G. Cheng, S. Dong, A novel electrochemical SPR biosensor, Electroche. Communi. 3 (2001) 489-493.

Google Scholar

[131] A. Mulchandani, C.L. Wang, H.H. Weetall, Amperometric Detection of Peroxides with Poly(anilinomethylferrocene).Modified Enzyme Electrodes, Anal. Chem. 67 (1995) 94-100.

DOI: 10.1021/ac00097a016

Google Scholar

[132] A. Morrin, O. Nagamna, A.J. Killard, S.E. Moulton, M.R. Smyth, G.G. Wallace, An amperometric enzyme biosensor fabricated from polyaniline nanoparticles, Electroanalysis 17 (2005) 423-430.

DOI: 10.1002/elan.200403185

Google Scholar

[133] X. Luo, A.J. Killard, A. Morrin, M.R. Smyth, Enhancement of a conducting polymer-based biosensor using carbon nanotube-doped polyaniline, Anal. Chim. Acta 575 (2006) 39-44.

DOI: 10.1016/j.aca.2006.05.064

Google Scholar

[134] Q. Xu, J. J. Zhu, X.Y. Hu, Ordered mesoporous polyaniline film as a new matrix for enzyme immobilization and biosensor construction, Anal. Chim. Acta 597 (2007) 151-156.

DOI: 10.1016/j.aca.2007.06.034

Google Scholar

[135] X. Luo, A. J. Killard, A. Morrin, M. R. Smyth, In situ electropolymerised silica–polyaniline core–shell structures: Electrode modification and enzyme biosensor enhancement, Electrochim. Acta 52 (2007) 1865-1870.

DOI: 10.1016/j.electacta.2006.07.051

Google Scholar

[136] A. Morrin, A. Guzman, A.J. Killard, J.M Pingarron, M.R. Smyth, Characterisation of horseradish peroxidase immobilisation on an electrochemical biosensor by colorimetric and amperometric techniques, Biosens. Bioelectron. 18 (2003) 715-720.

DOI: 10.1016/s0956-5663(03)00003-4

Google Scholar

[137] A. Morrin, F. Wilbeer, O. Ngamna, S.E. Moulton, A.J. Killard, G.G. Wallace, M.R. Smyth, Novel biosensor fabrication methodology based on processable conducting polyaniline nanoparticles, Electrochem. Commun. 7 (2005) 317-322.

DOI: 10.1016/j.elecom.2005.01.014

Google Scholar

[138] O. Ngamna, A. Morrin, S.E. Moulton, A.J. Killard, M.R. Smyth, G.G. Wallace, An HRP based biosensor using sulphonated polyaniline, Synth. Met. 153 (2005) 185-188.

DOI: 10.1016/j.synthmet.2005.07.259

Google Scholar

[139] K. Radhapyari, P. Kotoky, R. Khan, Detection of anticancer drug tammoxifen using biosensor based on polyaniline probe modified with horseradish peroxidase, Materials Science and Engineering: C 33 (2013) 583-587.

DOI: 10.1016/j.msec.2012.09.021

Google Scholar

[140] S. Piletsky, E. Piletska, A. Bossi, N. Turner, A. Turner, Surface functionalization of porous polypropylene membranes with polyaniline for protein immobilization , Biotech. Bioeng. 82 (2003) 86-92.

DOI: 10.1002/bit.10544

Google Scholar

[141] R. Ahmad, N. Tripathy, Y.-B. Hahn, Wide linear-range detecting high sensitivity cholesterol biosensors based on aspect-ratio controlled ZnO nanorods grown on silver electrodes, Sensors and Actuators B: Chemical 169 (2012) 382- 386

DOI: 10.1016/j.snb.2012.05.027

Google Scholar

[142] C. Dhand, S. P.Singh, S.K. Arya, M. Datta, B.D. Malhotra, Cholesterol biosensor based on electrophoretically deposited conducting polymer film derived from nano-structured polyaniline colloidal suspension, Anal. Chim. Acta 602 (2007) 244-251.

DOI: 10.1016/j.aca.2007.09.028

Google Scholar

[143] Z.M. Thair, E.C. Alocilja, D.L. Grooms, Polyaniline synthesis and its biosensor application, Biosens. Bioelectron. 20 (2005) 1690-1695.

DOI: 10.1016/j.bios.2004.08.008

Google Scholar

[144] Z.M. Thair, E.C. Alocilija, A conductometric biosensor for biosecurity, Biosens. Bioelectron. 18 (2003) 813-819.

Google Scholar

[145] S. Pal, E.C. Alocilja, F.P. Downes, Nanowire labeled direct-charge transfer biosensor for detecting Bacillus species, Biosens. Bioelectron. 22 (2007) 2329-2336.

DOI: 10.1016/j.bios.2007.01.013

Google Scholar

[146] V.V.R. Sai, S. Mahajan, A.Q. Contractor, S. Mukherji, Immobilization of Antibodies on Polyaniline Films and Its Application in a Piezoelectric Immunosensor, Anal. Chem. 78 (2006) 8368-8373.

DOI: 10.1021/ac060120a

Google Scholar

[147] S. Timur, N. Pazarlioğlu, R. Pilloton, A. Telefoncu, Thick film sensors based on laccases from different sources immobilized in polyaniline matrix, Sens. Actuators, B 97 (2004) 132-136.

DOI: 10.1016/j.snb.2003.07.018

Google Scholar

[148] J.H.O. Owino, A. Ignaszak, A. Al-Ahmed, P.G.L. Baker, H. Alemu, J.G. Ngila, E.I. Iwuoha, Modelling of the impedimetric responses of an aflatoxin B1 immunosensor prepared on an electrosynthetic polyaniline platform, Anal. Bioanal. Chem. 388 (2007) 1069-1074.

DOI: 10.1007/s00216-007-1333-9

Google Scholar

[149] D. Du, X. Ye, J. Cai, J. Liu, A. Zhang, Acetylcholinesterase biosensor design based on carbon nanotube- encapsulated polypyrrole and polyaniline copolymer for amperometric detection of organophosphates, Biosens. Bioelectron. 25 (2010) 2503-2508.

DOI: 10.1016/j.bios.2010.04.018

Google Scholar

[150] D. Du, W. Chen, W. Zhang, D. Liu, H. Li, Y. Lin, Covalent coupling of organophosphorous hydrolase loaded quantum dots to caron nanotube/Au nanocomposite for enhanced detection of methyl parathion, Biosens. Bioelectron. 25 (2010) 1370-1375.

DOI: 10.1016/j.bios.2009.10.032

Google Scholar

[151] J.J. Langer, M. Filipiak, J. Kecińska, J. Jasnowska, J. Włodarczak, B. Buładowski, Polyaniline biosensor for choline determination, Surf. Sci. 573 (2004) 140-145.

DOI: 10.1016/j.susc.2004.05.140

Google Scholar

[152] P.A. Fioritio, S.I. Córdaba de Torresi, Optimized multilayer oxalate biosensor, Talanta 62 (2004) 649-654.

DOI: 10.1016/j.talanta.2003.09.010

Google Scholar

[153] S. Hu, C. Xu, J. Luo, J. Luo, D. Cui, Biosensor for detection of hypoxanthine based on xanthine oxidase immobilized on chemically modified carbon paste electrode, Anal. Chim. Acta 412 (2000) 55-61.

DOI: 10.1016/s0003-2670(00)00748-0

Google Scholar

[154] H. Xue, Z. Shen, A highly stable biosensor for phenols prepared by immobilizing polyphenol oxidase into polyaniline–polyacrylonitrile composite matrix, Talanta 57 (2002) 289-295.

DOI: 10.1016/s0039-9140(02)00028-0

Google Scholar

[155] D. Shan, Q. Shi, D. Zhu, H. Xue, Inhibitive detection of benzoic acid using a novel phenols biosensor based on polyaniline–polyacrylonitrile composite matrix, Talanta 72 (2007) 1767-1772.

DOI: 10.1016/j.talanta.2007.02.007

Google Scholar

[156] F. Qu, M. Yang, J. Jiang, G. Shen, R. Yu, Amperometric biosensor for choline based on layer-by-layer assembled functionalized carbon nanotube and polyaniline multilayer film, Anal. Biochem. 344 (2005) 108-114.

DOI: 10.1016/j.ab.2005.06.007

Google Scholar

[157] S. Suman, R. Singhal, A.L. Sharma, B.D. Malthotra, C.S. Pundir, Development of a lactate biosensor based on conducting copolymer bound lactate oxidase, Sens. Actuators, B 107 (2005) 768-772.

DOI: 10.1016/j.snb.2004.12.016

Google Scholar

[158] M. Gerard, K. Ramnathan, A. Chaubey, B.D. Malhotra, Immobilization of lactate dehydrogenase on electrochemically prepared polyaniline films, Electroanalysis 11 (1999) 450-452.

DOI: 10.1002/(sici)1521-4109(199905)11:6<450::aid-elan450>3.0.co;2-r

Google Scholar

[159] A. Efthekhari, Glycerol biosensor based on glycerol dehydrogenase incorporated into polyaniline modified aluminum electrode using hexacyanoferrate as mediator, Sens. Actuators, B 80 (2001) 283-289.

DOI: 10.1016/s0925-4005(01)00916-9

Google Scholar