The Removal of Strontium(II) and Neodymium(III) from their Aqueous Solutions on Chrysotile Nanotubes

Article Preview

Abstract:

In this research, chrysotile nanotubes (ChNTs) were synthesized by the hydrothermal method. Synthetic ChNTs were characterized using XRD, SEM, TEM and N2 adsorption-desorption. Adsorption technique was applied for removal of Sr (II) and Nd (III) from aqueous solution by using ChNTs. The process had been investigated as a function of pH and temperature. The experimental data were analyzed using equilibrium isotherm models. The adsorption isotherms are fitted well by Langmuir model, having a maximum adsorption capacities of 102.56 mg·g-1 for Sr (II) and 47.44 mg·g-1 for Nd (III) at 298 ± 1 K. FTIR and XPS techniques were employed to investigate possible adsorption mechanism.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 881-883)

Pages:

519-524

Citation:

Online since:

January 2014

Export:

Price:

* - Corresponding Author

[1] T.M. Nenoff: Ind. Eng. Chem. Res. Vol. 51 (2012), p.605.

Google Scholar

[2] R.C. Ewing: Geological Society, London, Special Publications, Vol. 236 (2004), p.7.

Google Scholar

[3] C.L. Chen, J. Hu, D.D. Shao, J. Li and X.K. Wang: J. Hazard. Mater. Vol. 164 (2009), p.923.

Google Scholar

[4] O. Ali, H. Osman, S. Sayed and M. Shalabi: J. Hazard. Mater. Vol. 195 (2011), p.62.

Google Scholar

[5] X.K. Wang and X.P. Liu: Appl. Radiat. Isotopes. Vol. 61 (2004), p.1413.

Google Scholar

[6] I.B. Valentim and I. Joekes: Colloid. Surface. A. Vol. 290 (2006), p.106.

Google Scholar

[7] P. Sabatino, L. Casella, A. Granata, M. Iafisco, I.G. Lesci, E. Monzani and N. Roveri: J. Colloid. Interf. Sci. Vol. 314 (2007), p.389.

DOI: 10.1016/j.jcis.2007.05.081

Google Scholar

[8] L.L. Cheng, S.M. Yu, C.C. Zha, Y.J. Yao and X.F. Pan: Chem. Eng. J. Vol. 213(2012), p.22.

Google Scholar

[9] E.N. Korytkova, A.V. Maslov, L.N. Pivovarova, Y.V. Polegotchenkova, V.F. Povinich and V.V. Gusarov: Inorg. Mater. Vol. 41 (2005), p.743.

DOI: 10.1007/s10789-005-0202-1

Google Scholar

[10] I. Langmuir: J. Am. Chem. Soc. Vol. 40 (1918), p.1361.

Google Scholar

[11] H. Freundlich: Zeitschrift für Physikalische Chemie (Leipzing). Vol. 57 (1906), p.385.

Google Scholar

[12] Y.J. Yao, B. He, F.F. Xu and X.F. Chen: Chem. Eng. J. Vol. 170 (2011), p.82.

Google Scholar

[13] M.C. Palmieri, O. Garcia Jr and P. Melnikov: Process Biochem. Vol. 36 (2000), p.441.

Google Scholar

[14] G. Gürboğa and H. Tel: J. Hazard. Mater. Vol. 120 (2005), p.135.

Google Scholar

[15] A. Ghaemi, M. Torab-Mostaedi and M. Ghannadi-Maragheh: J. Hazard. Mater. Vol. 190 (2011), p.916.

Google Scholar

[16] S. Chegrouche, A. Mellah and M. Barkat: Desalination. Vol. 235 (2009), p.306.

Google Scholar

[17] B. Ma, W.S. Shin, S. Oh, Y. J. Park and S.J. Choi: Sep. Sci. Technol. Vol. 45 (2010), p.453.

Google Scholar

[18] C. Siva Kesava Raju and M.S. Subramanian: J. Hazard. Mater. Vol. 145 (2007), p.315.

Google Scholar