Scenario-Based Development of Disassembly Systems for Automotive Lithium Ion Battery Systems

Article Preview

Abstract:

The rising number of lithium ion batteries from electric vehicles makes an economically advantageous and technically mature disassembly system for the end-of-life batteries inevitable. The disassembly system needs to cope with the size, the design and the remaining state of charge of the respective battery system. The complex design resulting from the number and type of connection elements challenges an automated disassembly. The realisation of an automated disassembly presupposes the consideration of elements from Design for Disassembly throughout the battery system development. In this paper a scenario-based development of disassembly systems is presented with varying possible design aspects as well as different amounts of end of life battery systems. These scenarios point out the resulting implications on battery disassembly systems in short, medium and long term. Using a morphological box the best option for each disassembly scenario is identified and framed in a disassembly system design. The disassembly systems are explained and the core elements are introduced. Newly developed and innovative disassembly tools, such as a robot that allows a hybrid human-robot-working-space and an advanced battery cell gripper are introduced. The gripper system for the battery cells enables with an integrated sensor an instant monitoring of the battery cell condition. The proposed disassembly element is verified in an experimental test series with automotive pouch cell batteries.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

391-401

Citation:

Online since:

April 2014

Export:

Price:

* - Corresponding Author

[1] Ferreira, D.A., Pradosa, L. M.Z., Majustea, D. And Mansur, M.B., Hydrometallur-gical separation of aluminium, cobalt, copper and lithium from spent Li-ion batteries, Journal of Power Sources, 187(2009)1, 238-246.

DOI: 10.1016/j.jpowsour.2008.10.077

Google Scholar

[2] Gaines, L., Cuenca, R. (2000): Costs of Lithium-Ion Batteries for Vehicles. Operated by The University of Chicago, under Contract W-31-109-Eng-38, for the United States Department of Energy, Argonne, Illinois. http: /www. doe. gov/bridge.

Google Scholar

[3] Swain, B., Jeong, J., Lee, J. -c., Lee, G. -H., Sohn, J. -S., Hydrometallurgical process for recovery of cobalt from waste cathodic active material generated during manufacturing of lithium ion batteries, Journal of Power Sources, 167(2007).

DOI: 10.1016/j.jpowsour.2007.02.046

Google Scholar

[4] Lupi, C., Pasquali, M., Dell'Era, A., Nickel and cobalt recycling from lithium-ion batteries by electrochemical processes, Waste Management, 25(2004), 215-220.

DOI: 10.1016/j.wasman.2004.12.012

Google Scholar

[5] Nan, J., Han, D., Zuo, X., Recovery of metal values from spent lithium-ion batteries with chemical deposition and solvent extraction, Journal of Power Sources, 152(2005), 278-284.

DOI: 10.1016/j.jpowsour.2005.03.134

Google Scholar

[6] Herrmann, C. Unterstützung der Entwicklung recyclinggerechter Produkte, Vulkan-Verlag, Essen, (2003).

Google Scholar

[7] Eversheim, W., Hartmann, M., Linnhoff, M., Zukunfts-perspektive Demontage, VDI-Z, 134(1992)6, 83-86.

Google Scholar

[8] Hentschel, C., Beitrag zur Organisation von Demontagesystemen, Berichte aus dem Produktions-technischen Zentrum Berlin, Dissertation, Berlin, (1996).

Google Scholar

[9] Penev, K., Design of disassembly systems - a systematic approach, Dissertation, Eindhoven, (1996).

Google Scholar

[10] Ohlendorf, M., Simulationsgestützte Planung und Bewertung von Demontagesystemen, Dissertation, Vulkan-Verlag, Essen, (2006).

Google Scholar

[11] Baumgarten, H. and Sommer-Dittrich, T., Gestaltung innerbetrieblicher Logistikkonzepte für Demontagefabriken, Zeitschrift für wirtschaftliche Fertigung (ZWF), Sonderbeilage Demontage, July 2000, 25-27.

Google Scholar

[12] Limaye, K.G. and Caudill, R.J., Systems modeling and simulation of electronic demanufacturing facilities, Proceedings of the 1999 IEEE Int. Symposium on Electronics and the Environment, Danvers, Massachusetts, 1999, 238-243.

DOI: 10.1109/isee.1999.765883

Google Scholar

[13] Santochi, M., Dini, G., Failli, F. Computer Aided Disassembly Planning: State of the Art and Perspectives, CIRP Annals - Manufacturing Technology, 51(2002)2, 507-529.

DOI: 10.1016/s0007-8506(07)61698-9

Google Scholar

[14] Güngör, A., Gupta, S.M., Pochampally, K. and Kamarthi, S.V., Complications in disassembly line balancing, Proceedings of SPIE International Conference on Environ-mentally Conscious Manufacturing, (2000) 4193, 289-298.

DOI: 10.1117/12.417274

Google Scholar

[15] Westernhagen, K. von Planung und Steuerung der Retro-Produktion, Dissertation, Vulkan Verlag, Essen, (2001).

Google Scholar

[16] Lambert, A. J. D., Optimal disassembly of complex products, International Journal of Production Research, 35(1997)9, 2509-2523.

Google Scholar

[17] Lee, D-H., Xirouchakis, P. and Züst, R., Disassembly scheduling with capacity constraints, CIRP Annals Manufacturing Technology, 51(2002)1, 387-390.

DOI: 10.1016/s0007-8506(07)61543-1

Google Scholar

[18] Kara, S., Pornprasitpol, P., Kaebernick. H., Selective Disassembly Sequencing: A Methodology for the End-of-Life Products, Annals of the CIRP, Vol. 55(2006)1.

DOI: 10.1016/s0007-8506(07)60361-8

Google Scholar

[19] Eckerth, G. Planning of flexible automated disassembly systems, Proceedings of the CARE Innovation (2002).

Google Scholar

[20] Ciupek, M., Beitrag zur simulationsgestuetzten Planung von Demontagefabriken fuer Elektro-und Elektronikaltgeraete, Dissertation, TU Berlin, (2004).

Google Scholar

[21] Nave, M., Beitrag zur automatisierten Demontage durch Optimierung des Trennprozesses von Schraubenverbindungen, Dissertation, Universität Dortmund, (2003).

Google Scholar

[22] Weigl-Seitz, A., Hohm, K., Seitz, M., Tolle, H., On strategies and solutions of automated disassembly of electronic devices, International Journal of Manufacturing Technology, 30(2006), 561-573.

DOI: 10.1007/s00170-005-0043-8

Google Scholar

[23] Stenzel, A.,. Beitrag zum flexiblen Greifen in der Demontage, Dissertation, Universität Berlin, (2012).

Google Scholar

[24] Herrmann, C., Ohlendorf, M., Hesselbach, J. Planning WEEE Disassembly –State of the Art and Research Perspectives, CIRP Seminar on Life Cycle Engineering, (2012).

Google Scholar

[25] Kwade, A., Bärwaldt, G. et al., Abschlussbericht zum Verbundvorhaben Recycling von Lithium-Ionen-Batterien (LihtoRec), Braunschweig, 2012, 12-18.

Google Scholar

[26] Herrmann, C.; Raatz, A.; Mennenga, M.; Schmitt, J.; Andrew, S.: Assessment of Automation Potentials for the Disassembly of Automotive Lithium Ion Battery Systems. Proc. of the 19th CIRP International Conference on Life Cycle Engineering, Berkeley, (2012).

DOI: 10.1007/978-3-642-29069-5_26

Google Scholar

[27] Schmitt, J.; Haupt, H.; Kurrat, M.; Raatz, A.: Disassembly Automation for Lithium-Ion Battery Systems Using a Flexible Gripper. Proc. of the 15th IEEE International Conference on Advanced Robotics (ICAR), (2011).

DOI: 10.1109/icar.2011.6088599

Google Scholar

[28] Krüger, J.; Lien, T.K.; Verl, A.: Cooperation of human and machines in assembly lines. CIRP Annals - Manufacturing Technology. 58(2009) 2, 628.

DOI: 10.1016/j.cirp.2009.09.009

Google Scholar

[29] Schraft, R.D.; Meyer, C.; Parlitz, C.; Helms, E.; PowerMate – A Safe and Intuitive Robot Assistant for Handling and Assembly Tasks. Proc. of the 2005 IEEE International Conference on Robotics and Automation (ICRA), 2005, 4074- 4079.

DOI: 10.1109/robot.2005.1570745

Google Scholar