A Beam Element for Geometric Nonlinear Dynamical Analysis

Article Preview

Abstract:

In this paper, a three-dimensional beam element is developed for geometric nonlinear dynamical analysis. This element is based on the co-rotational formulation, in which the displacements of beam element are subdivided into rigid body movements and elastic deformations. The formulations are derived from the continuum mechanics based Updated Lagrangian incremental equations. The element can undergo large deflections and rotations, but small strains are assumed in the deduction. The validity of this element is confirmed by comparing with the numerical results in other literatures.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 919-921)

Pages:

1273-1281

Citation:

Online since:

April 2014

Authors:

Export:

Price:

* - Corresponding Author

[1] T. Belytschko and T. Hsieh, Non-linear Transient Finite Element Analysis with Convected Coordinates, International Journal for Numerical Methods in Engineering, vol. 7, pp.255-271, (1973).

DOI: 10.1002/nme.1620070304

Google Scholar

[2] J. H. Argyris, G. Balmer, J. S. Doltsinis, P. C. Dunne, M. Haase, M. Klieber, G. A. Malejannakis, J. P. Mlejenek, M. Muller, D. W. Scharpf. Finite Element Method—the Natural Approach. Comp. Meth. in Appl. Mech & Engng., 1979, 17/18: 1-106.

DOI: 10.1016/0045-7825(79)90083-5

Google Scholar

[3] K. J. Bathe and S. Bolourchi, Large Displacement Analysis of Three-dimensional Beam Structures. International Journal for Numerical Methods in Engineering, vol. 14, pp.961-986, (1979).

DOI: 10.1002/nme.1620140703

Google Scholar

[4] M. A. Crisfield. A Consistent Co-rotational Formulation for Non-linear Three-Dimensional Beam Elements. Comp. Meth. in Appl. Mech & Engng., 1990, 81: 131-150.

DOI: 10.1016/0045-7825(90)90106-v

Google Scholar

[5] Y. B. Yang, H. T. Chiou. Rigid Body Motion Test for Nonlinear Analysis with Beam Elements. Journal of Engineering Mechanics, 1987, 113(9): 1404-1419.

DOI: 10.1061/(asce)0733-9399(1987)113:9(1404)

Google Scholar

[6] Y. B. Yang, J. D. Yau, L. J. Leu. Recent Developments in Geometrically Nonlinear and Postbuckling Analysis of Framed Structures. Appl. Mch. Rev., 2003, 56(4): 431-449.

DOI: 10.1115/1.1578498

Google Scholar

[7] Duan Jin, Li Yun-gui. A Large Rotation Method for the Geometric Nonlinear analysis of Frame Structures,. Journal of Building Structures. (in Chinese, submitted).

Google Scholar

[8] K. J. Bathe, Ramm E, Wilson E L. Finite Element Formulations for Large Deformation Dynamic Analysis. International Journal for Numerical Methods in Engineering, 1975, 9: 353-386.

DOI: 10.1002/nme.1620090207

Google Scholar

[9] T. L. Yang, S. Saigal. A Simple Element for Static and Dynamic Response of Beams with Material and Geometric Nonlinearities. International Journal for Numerical Methods in Engineering, 1984, 20: 851-867.

DOI: 10.1002/nme.1620200506

Google Scholar

[10] A. K. Noor, N. F. Knight. Nonlinear Dynamic Analysis of Curved Beams. Computer Methods in Applied Mechanics and Engineering, 1980, 23: 225-251.

DOI: 10.1016/0045-7825(80)90095-x

Google Scholar

[11] M. H. Kuo, R. T. Yang. A Co-Rotational Formulation for Nonlinear Dynamic Analysis of Curved Euler Beam. Computers & Structures, 1995, 54(6): 1091-1097.

DOI: 10.1016/0045-7949(94)00399-n

Google Scholar