Modeling of Mechanical Damage in Traditional Brickwork Walls after Fire Exposure

Article Preview

Abstract:

The paper addresses the issues of fire behavior of masonry walls made of traditional/historical component materials (bricks and mortar).There are reasons for coupling investigations on the residual mechanical properties to fire resistance data, aiming at a more complete knowledge of the behavior of a masonry member during and after fire exposure. The paper proposes a numerical approach via FEM to the problem of residual mechanical performance of load-bearing fire-separating masonry walls after insulation failure. The goal is to establish relationships between fire resistance ratings under exposure and decay in mechanical properties after exposure; the parameter of wall thickness is especially investigated. This is performed by means of FEM analysis, simulating a standard ISO 834 fire resistance test followed by a mechanical compressive failure test on each investigated type of wall. First, a preliminary transient heat flow analysis gives a numerical prediction of fire resistance after violation of I (Insulation) criterion; then, a staggered heat flow - stress analysis repeats the heating of the wall up to insulation failure and calculates the thermal strain accounting for cracking; finally, a 'cold' structural analysis in compression is performed on the thermally-deformed model after cooling. The comparison of numerical outcomes to available experimental information allows to judge the reliability of the numerical approach in reproducing the residual behavior of a masonry wall after fire exposure.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 919-921)

Pages:

495-499

Citation:

Online since:

April 2014

Export:

Price:

[1] S. Russo, F. Sciarretta (2012). Masonry exposed to high temperatures: Mechanical behaviour and properties — An overview. Fire Safety Journal, 55, pp.69-86.

DOI: 10.1016/j.firesaf.2012.10.001

Google Scholar

[2] S. Russo, F. Sciarretta (2012). Experimental and Theoretical Investigation on Masonry after High Temperature Exposure, Experimental Mechanics, 52 (4), pp.341-359.

DOI: 10.1007/s11340-011-9493-0

Google Scholar

[3] F. Sciarretta, Analisi teorico-sperimentale del comportamento meccanico di muratura malta-mattoni soggetta ad alte temperature, PhD thesis, University of Trento, (2010).

Google Scholar

[4] M. Andreini, M. Sassu, Mechanical behaviour of full unit masonry panels under fire action, Fire Saf. J. 46 (2011) 440-450.

DOI: 10.1016/j.firesaf.2011.07.004

Google Scholar

[5] F. R. R. Ayala, Mechanical properties and structural behaviour of masonry at elevated temperatures, PhD Thesis, University of Manchester, (2010).

Google Scholar

[6] Th. -D. Nguyen, F. Meftah, R. Chammas, A. Mebarki, The behaviour of masonry walls subjected to fire: modelling and parametric studies in the case of hollow burnt-clay bricks, Fire Saf. J. 44 (2009) 629-641.

DOI: 10.1016/j.firesaf.2008.12.006

Google Scholar

[7] G. Boscato, A. Dal Cin, S. Russo, F. Sciarretta (2014). SHM of Historic Damaged Churches. Advanced Materials Research 838-841, p.2071-(2078).

DOI: 10.4028/www.scientific.net/amr.838-841.2071

Google Scholar

[8] S. Russo (2014). On the monitoring of historic Anime Sante Church damaged by earthquake in L'Aquila, Structural Control and Health Monitoring 20(9), 1226-1239.

DOI: 10.1002/stc.1531

Google Scholar

[9] C. Casalegno, A. Cecchi, E. Reccia, S. Russo (2013).

Google Scholar

[10] G. Milani, S. Russo, M. Pizzolato, A. Tralli (2012). Seismic Behavior of the San Pietro di Coppito Church Bell Tower in L'Aquila, Italy, Open Civil Engineering Journal 6 (SPEC. ISS. 1) , pp.131-147.

DOI: 10.2174/1874149501206010131

Google Scholar

[11] G. Boscato, M. Pizzolato, S. Russo, A. Tralli (2012). Seismic Behaviour of a Complex Historical Church in L'Aquila, International Journal Of Architectural Heritage, DOI: 10. 1080/15583058. 2012. 736013.

DOI: 10.1080/15583058.2012.736013

Google Scholar

[12] S. Russo (2012). Testing and modelling of dynamic out-of-plane behaviour of the historic masonry façade of Palazzo Ducale in Venice, Italy, Engineering Structures, 46, pp.130-139.

DOI: 10.1016/j.engstruct.2012.07.032

Google Scholar

[13] G. Boscato, D. Rocchi, S. Russo (2012). Anime Sante Church's Dome After 2009 L'Aquila Earthquake, Monitoring and Strengthening Approaches, Advanced Materials Research 446-449 pp.3467-3485.

DOI: 10.4028/scientific5/amr.446-449.3467

Google Scholar

[14] G. Boscato, S. Russo, F. Sciarretta (2011). Structural Monitoring of the Slender Double-Layered Façade of Palazzo Ducale in Venice - Preliminary Analysis of Measurements, Masonry International, 24 (3), pp.57-72.

Google Scholar

[15] G. Boscato, G. Riva, S. Russo, F. Sciarretta (2011).

Google Scholar

[16] G.P. Cimellaro, G. Boscato, S. Russo, A. De Stefano (2013).

Google Scholar

[17] G. Boscato, A. Dal Cin, S. Russo (2013). Dynamic identification of all-GFRP structures. ICCS17, Porto, 17-21 June (2013).

Google Scholar

[18] CSE – ANDIL, Ricerca sperimentale per la determinazione della resistenza al fuoco di varie tipologie di solai e pannelli murari con elementi di laterizio, svolta in collaborazione con ANDIL – AssoLaterizi, Centro Studi ed Esperienze Antincendi, Rome, 1995 [in Italian].

Google Scholar

[19] D. Drysdale, An introduction to fire dynamics, second ed., Wiley & sons, Chichester, (2000).

Google Scholar

[20] Pareti portanti resistenti al fuoco, Circular letter of the Home Office, Republic of Italy, n. 1968, 2008 [in Italian].

Google Scholar

[21] Brick Industry Association, Fire resistance of brick masonry, Technical Notes 16 (2008).

Google Scholar