Electroluminescent Textile for Therapeutic Applications

Article Preview

Abstract:

Alternating-current (AC) electroluminescent (EL) devices on fabrics with high brightness are presented. The EL-devices were fabricated via knife coating; inorganic luminous pigments are based on zinc sulfide. Effects of parameters influencing the brightness were investigated. These parameters are the AC-voltage, AC-frequency, AC-waveform, layer composition of the luminous capacitor and the fabric. Introducing a flexible reflecting dielectric layer enhances the light yield on fine woven fabrics with green luminous pigment. This can be achieved with small concentrations of reflective white pigments such as titanium dioxide, maintaining the flexibility and bendability of the textile substrate. The produced luminous textiles are investigated as a possible replacement for light boxes used in the therapy of seasonal affective disorder (SAD). A high luminous emittance and a high portion of short and energy rich wavelengths are necessary for the treatment. Contrarily to state-of-the-art light boxes a higher acceptance of light therapy is expected, because a luminous textile can be integrated easily and unremarkably into the living environment.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

73-78

Citation:

Online since:

October 2016

Export:

Price:

* - Corresponding Author

[1] V. Leichtfried, W. Kantner-Rumplmair, C. Bartenbach, H. Guggenbichler, R. Matteucci Gothe, W. Schobersberger, Int. J. Psychiatry Clin. Pract. 2010, 14, 309-312.

DOI: 10.3109/13651501.2010.486900

Google Scholar

[2] a) M. Rabe, E. Lempa, C. M. Steinem, German Patent DE102009026409 (2010); b) M. Rabe, E. Lempa, C. M. Steinem, US Patent 8, 952, 610 (2015).

Google Scholar

[3] B. Hu, D. Li, O. Ala, P. Manandhar, Q. Fan, D. Kasilingam, P. D. Calvert, Adv. Funct Mat. 2011, 21, 305-311.

DOI: 10.1002/adfm.201001110

Google Scholar

[4] J. F. Wager, P. D. Keir, Annu. Rev. Mater. Sci. 1997, 27, 223-248.

Google Scholar

[5] N. E. Grzeskowiak, J. F. Winkel, J. Electrochem. Soc. 2007, 154, J289-J294.

Google Scholar

[6] D. Li, B. L. Clark, D. A. Keszler, P. Keir, J .F. Wager, Chem. Mater. 2000, 12, 268-270.

Google Scholar

[7] S. Park, G. R. Choi, Y. C. Kim, J. C. Lee, J. H. Lee, J. Nanosci. Nanotechnol., 2013, 13, 3437-3440.

Google Scholar

[8] D. M. Hepburn, I. J. Kemp, A. J. Shields, IEEE Electrical Insulation Magazine, 2000, 16, 19-24.

Google Scholar

[9] H. Tetsuka, T. Ebina, T. Tsunoda, H. Nanjo, F. Mizukami, Nanotechnology, 2007, 18, 355701.

DOI: 10.1088/0957-4484/18/35/355701

Google Scholar

[10] Z. Yu, Q. Zhang, L. Li, Q. Chen, X. Niu, J. Liu, Q. Pei, Adv. Mat. 2011, 23, 664-668.

Google Scholar

[11] S. Azoubel, S. Shemesh, S. Magdassi , Nanotechnology, 2012, 23, 344003.

Google Scholar

[12] H. E. Yin, C. H. Wu, K. S. Kuo, W. Y. Chiu, C. F. Lee, N. T. Li, P. J. Chen, Synt. Met., 2011, 161, 1878-1885.

Google Scholar

[13] G. Eda, Y. Y. Lin, S. Miller, C. W. Chen, W. F. Su, M. Chowalla, Appl. Phys. Lett. 2008, 92, 233305.

Google Scholar

[14] M. Layani, A. Kamyshny, S. Magdassi, Nanoscale, 2014, 6, 5581-5591.

DOI: 10.1039/c4nr00102h

Google Scholar

[15] B. Hu, D. Li, P. Manandharm, Q. Fan, D. Kasilingam, P. Calvert, J. Mater. Chem 2012, 22, 1598-1605.

DOI: 10.1039/c1jm14121j

Google Scholar

[16] M. Åkerfeldt, M. Strååt, P. Walkenström, Text. Res. J., 2013, 83, 618-627.

Google Scholar

[17] M. D. Irwin, D. A. Roberson, R. I. Olivas, R. B. Wicker, E. MacDonald, Fibres Polym. 2011, 12, 904-910.

Google Scholar

[18] H. Kang, S. Jung, S. Jeong, G. Kim, K. Lee, Nat. Commun., 2015, 6, 6503.

Google Scholar