Iterative Method in the Characterization of Piezoceramics of Industrial Interest

Article Preview

Abstract:

Although characterization of piezoceramics from resonance is a customary technique, the works dealing with the determination of the ten elastic, dielectric and piezoelectric coefficients that are needed in the full matrix characterization of such 6mm symmetry materials are rather scarce. Even more, if the complex characterization is foreseen, thus accounting with the three types of losses, few are the methods avaliable to obtain the material linear coefficients. This work deals with such complex characterization by the use of Alemany et al. automatic iterative method. This method has been applied to the four modes of resonance that are sufficient for the purpose: (1) the length extensional mode of long rods, length poled, (2) the thickness extensional mode and (3) the radial mode of a thin disk, thickness poled, and (4) the thickness shear mode of a thin plate. Recent work of the authors has shown the limits in characterizing materials that arise from the use of the Standard shear geometry and, therefore, and alternative geometry is used here. This work presents the matrix characterization of some piezoceramics and the Finite Element Analysis (FEA) simulation based on such characterization, of the samples used as a reliability criteria of the results obtained by comparison of the experimental and simulated values at resonance of the electrical parameters.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2448-2458

Citation:

Online since:

October 2006

Export:

Price:

[1] Piezoelectric Ceramics". B. Jaffe, W.R. Cook and H. Jaffe. Academic Press. London, (1971).

Google Scholar

[2] K.H. Haerdtl. Electrical and mechanical losses in ferroelectric ceramics,. Ceram Int. 8, 121(1982).

Google Scholar

[3] K. Uchino and S. Hirose. Loss mechanisms in piezoelectrics: How to measure different losses separately, IEEE UFFC 48, 307(2001).

DOI: 10.1109/58.896144

Google Scholar

[4] G. Robert, D. Damjanovic and N. Setter. Piezoelectric hysteresis analysis and loss separation,. J. Appl. Phys. 90(9), 4668(2001).

DOI: 10.1063/1.1405822

Google Scholar

[5] A.V. Mezheritsky. Elastic, Dielectric and Piezoelectric Losses in Piezoceramics: How It Works All Together, IEEE Ultrasonics, Ferroelectrics and Frequency Control, 51(6), 695-707 (2004).

DOI: 10.1109/tuffc.2004.1304268

Google Scholar

[6] Physical Properties of Crystals. Their representation by tensors and matrices". J.F. Nye. Oxford at the Clarendon Press. London, (1957).

Google Scholar

[7] Piezoelectric and Piezomagnetic Materials and Their Function in Transducers". D.A. Berlincourt, D.R. Curran and H. Jaffe in "Physical Acoustics, vol. 1 Part A. Ed W.P. Mason, Academic Press, (1964).

DOI: 10.1016/b978-1-4832-2857-0.50009-5

Google Scholar

[8] IRE standard on piezoelectric crystals: Measurements of piezoelectric ceramics, 1961", Proc. IRE, 49(7), 1161-1169 (1961).

DOI: 10.1109/jrproc.1961.287860

Google Scholar

[9] IEEE Standard on piezoelectricity". ANSI/IEEE Std. 176-(1987).

Google Scholar

[10] M. Algueró, C. Alemany, L. Pardo and A. M. Gonzalez. Method for Obtaining the Full Set of Linear Electric, Mechanical and Electromechanical coefficients and All Related Losses of a Piezoelectric Ceramic,. J. Am. Ceram. Soc. 87(2), 209 (2004).

DOI: 10.1111/j.1551-2916.2004.00209.x

Google Scholar

[11] R. Holland. Representation of dielectric, elastic and piezoelectric losses by complex coefficients,. IEEE Trans. Sonics Ultrason. SU-14(1), 18 (1967).

DOI: 10.1109/t-su.1967.29405

Google Scholar

[12] R. Holland and E. EerNisse. Accurate measurement of coefficients in a ferroelectric ceramic,. IEEE Trans. Sonics Ultrason. SU-16(4), 173 (1969).

DOI: 10.1109/t-su.1969.29524

Google Scholar

[13] J.G. Smits. Iterative method for accurate determination of the real and imaginary parts of the materials coefficients of piezoelectric ceramics,. IEEE Trans. Sonics Ultrason. SU-23(6), 393- 402(1976).

DOI: 10.1109/t-su.1976.30898

Google Scholar

[14] A.H. Meitzler, H.M. O´Bryan, Jr., and H.F. Tiersten. Definitions and measurements of radial mode coupling factors in piezoelectric ceramic materials with large variations in Poisson´s ratio, IEEE Trans. Sonics Ultrason. SU-20(3), 233 (1973).

DOI: 10.1109/t-su.1973.29750

Google Scholar

[15] S. Sherrit, N. Gauthier, H. D. Wiederick and B.K. Mukherjee. Accurate evaluation of the real and imaginary material constants for a piezoelectric resonator in the radial mode,. Ferroelectrics 119, 17 (1991).

DOI: 10.1080/00150199108223323

Google Scholar

[16] S. Sherrit, H. D. Wiederick and B.K. Mukherjee. Non-iterative Evaluation of the Real and Imaginary Material Constants of Piezoelectric Resonators,. Ferroelectrics 134, 111 (1992).

DOI: 10.1080/00150199208015574

Google Scholar

[17] S. Sherrit, H.D. Wiederick and B.K. Mukherjee A complete characterization of the piezoelectric, dielectric and elastic properties of Motorola PZT3203HD including losses and dispersion,. Medical Imaging 1997: Ultrasonic Transducer Engineering, SPIE Proceedings, 3037, 158 (1997).

DOI: 10.1117/12.271326

Google Scholar

[18] C. Alemany, L. Pardo, B. Jiménez, F. Carmona, J. Mendiola and A.M. González. Automatic iterative evaluation of complex material constants in piezoelectric ceramics,. J. Phys. D: Appl. Phys. 27, 148 (1994).

DOI: 10.1088/0022-3727/27/1/023

Google Scholar

[19] C. Alemany, A.M. González, L. Pardo, B. Jiménez, F. Carmona and J. Mendiola. Automatic determination of complex constants of piezoelectric lossy materials in the radial mode,. J. Phys. D: Appl. Phys. 28(5), 945 (1995).

DOI: 10.1088/0022-3727/28/5/017

Google Scholar

[20] A.M. Gonzalez and C. Alemany. Determination of the frequency dependence of characteristic constants in lossy piezoelectric materials,. J. Phys. D: Appl. Phys. 29, 2476 (1996).

DOI: 10.1088/0022-3727/29/9/037

Google Scholar

[21] K.W. Kwok, H.L.W. Chan and C.L. Choy. Evaluation of the Material Parameters of Piezoelectric Materials by various methods,. IEEE Trans. on Ultrasonics, Ferroelectrics and Frequency Control 44(4), 733 (1997).

DOI: 10.1109/58.655188

Google Scholar

[22] T. Tsurumi, Y.B. Kil, K. Nagatoh, H. Kakemoto and Shatoshi Wada. Intrinsic Elastic, Dielectric, and Piezoelectric Losses in Lead Zirconate Titanate Ceramics Determined by an Immittance-Fitting Method, J. Am. Ceram. Soc. 85(8), 1993 (2002).

DOI: 10.1111/j.1151-2916.2002.tb00393.x

Google Scholar

[23] X. Hong Du, Q. M. Wang and K. Uchino. Accurate Determination of Complex Materials Coefficients of Piezoelectric Resonators,. IEEE Trans. on Ultrasonics, Ferroelectrics and Frequency Control 50(3), 312 (2003).

DOI: 10.1109/tuffc.2003.1193625

Google Scholar

[24] J. Ricote, C. Alemany and L. Pardo. Microstructural effects on dielectric and piezoelectric behaviour of calcium modified lead titanate ceramics,. J. Mater. Res. 10(12), 3194 (1995).

DOI: 10.1557/jmr.1995.3194

Google Scholar

[25] L. Pardo, P. Duran-Martín, J.P. Mercurio, L. Nibou and B. Jiménez. Temperature behaviour of structural, dielectric and piezoelectric properties of sol-gel processed ceramics of the system LiNbO3-NaNbO3,. Journal of Phys. and Chem. Solids 58(9), 1335 (1997).

DOI: 10.1016/s0022-3697(97)00034-6

Google Scholar

[26] A. Moure, C. Alemany and L. Pardo. Temperature dependence of piezoelectric, electromechanical and elastic parameters of Aurivillius-type structure piezoceramics with optimized texture and microstructure,. IEEE Trans. Ultrasonic Ferroelectrics and Frequency Control, 52(4), 570-577 (2005).

DOI: 10.1109/tuffc.2005.1428038

Google Scholar

[27] M. Algueró, C. Alemany, L. Pardo and M.P. Thi. Piezoelectric Resonances, Linear Coefficients and Losses of Morphotropic Phase Boundary Pb(Mg1/3Nb2/3)O3-PbTiO3 Ceramics,. Journal of the American Ceramic Society 88(10), 2780-2787 (2005).

DOI: 10.1111/j.1151-2916.1997.tb02854.x

Google Scholar

[28] A. Barzegar, D. Damjanovic and N. Setter. The effect of boundary conditions and sample aspect ratio on apparent d33 piezoelectric coefficients determined by direct quasistatic method, IEEE Trans. on Ultrasonics, Ferroelectrics and Frequency Control 51(3), 262-270 (2004).

DOI: 10.1109/tuffc.2004.1295405

Google Scholar

[29] R. Steinhausen, T. Hauke, H. Beige, S. Seifert, U. Lange, D. Sporn, S. Gebhardt and A. Schönecker. Characterization and modelling of ferroelectric thin films and 1-3 composites,. Bol. Soc. Esp. Ceram. Vidrio 41(1), 158-165 (2002).

DOI: 10.1080/00150190211105

Google Scholar

[30] H. Wang and W. Cao. Determination of full set material constants from phase velocities,. J. Applied Physics 92(8), 4578- 4583(2002).

DOI: 10.1063/1.1505998

Google Scholar

[31] L. Pardo, M. Algueró and K. Brebøl. Resonance modes in Standard piezoceramic shear geometry: a discussion based on Finite Element Analysis,. Journal de Physique IV France 128, 207-211 (2005).

DOI: 10.1051/jp4:2005128031

Google Scholar

[32] L. Pardo, M. Algueró and K. Brebøl. Resonance modes in Standard characterization of piezoceramics: a discussion based on Finite Element Analysis,. Ferroelectrics, in press (2006).

DOI: 10.1080/00150190600739996

Google Scholar

[33] http: /www. ferroperm-piezo. com.

Google Scholar

[34] L. Pardo, F. Montero de Espinosa and K. Brebøl. Study by laser interferometry of the resonance modes of the shear plate used in the Standards characterization of piezoceramics, (submitted).

DOI: 10.1007/s10832-007-9052-3

Google Scholar

[35] L. Pardo, A. García, K. Brebøl, D. Piazza and C. Galassi. Matrix Characterization, Including Losses, of Porous PZT based ceramics with Morphotropic Phase Boundary Composition: Key Issues, (submitted).

DOI: 10.1007/s10832-007-9050-5

Google Scholar