Casson Model of MHD Flow of SA-Based Hybrid Nanofluid Using Caputo Time-Fractional Models

Article Preview

Abstract:

In this paper MHD flow of Casson hybrid nanofluids are investigated with Caputo time-fractional derivative. Alumina (Al) and copper (Cu) are used as nanoparticles in this study with heat, mass transfer and MHD flow over a vertical channel in a porous medium. The problem is modeled using Caputo fractional derivatives and thermophysical properties of hybrid nanoparticles. The influence of concerned parameters is investigated physically and graphically on the heat, concentration and flow. The effect of volume fraction on thermal conductivity of hybrid nanofluids is observed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

83-90

Citation:

Online since:

January 2019

Export:

Price:

[1] J.C. Maxwell, A Treatise on Electricity & Magnetism, Clarendon Press, Oxford, 1873.

Google Scholar

[2] S.U. Choi, J.A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, No. ANL/MSD/CP--84938; CONF-951135—29, Argonne National Lab., IL, United States, (1995).

Google Scholar

[3] A. Hussanan, M.Z. Salleh, I. Khan, S. Shafie, Convection heat transfer in micropolar nanofluids with oxide nanoparticles in water, kerosene and engine oil, J. Mol. Liq. 229 (2017) 482-488.

DOI: 10.1016/j.molliq.2016.12.040

Google Scholar

[4] K.Y. Bing, A. Hussanan, M.K.A. Mohamed, N.M. Sarif, Z. Ismail, M.Z. Salleh, Thermal radiation effect on MHD flow and heat transfer of Williamson nanofluids over a stretching sheet with Newtonian heating, AIP Conference Proceedings 1830 (2017).

DOI: 10.1063/1.4980885

Google Scholar

[5] S. Noreen, M. M. Rashidi, M. Qasim, Blood flow analysis with considering nanofluid effects in vertical channel, Appl Nanosci. 7 (2017) 193-199.

DOI: 10.1007/s13204-017-0564-0

Google Scholar

[6] S. Aman, I. Khan, Z. Ismail, M.Z. Salleh, A.S. Alshomrani, M.S. Alghamdi, Magnetic field effect on Poiseuille flow and heat transfer of carbon nanotubes along a vertical channel filled with Casson fluid, AIP Advances 7 (2017) 015036.

DOI: 10.1063/1.4975219

Google Scholar

[7] M. Qasim, H. Khan, Z., I. Khan, Q. Al-Mdallal, Analysis of Entropy Generation in Flow of Methanol-Based Nanofluid in a Sinusoidal Wavy Channel. Entropy, 19(10) (2017) 490.

DOI: 10.3390/e19100490

Google Scholar

[8] S. Aman, I. Khan, Z. Ismail, M.Z. Salleh, Q.M. Al-Mdallal, Heat transfer enhancement in free convection flow of CNTs Maxwell nanofluids with four different types of molecular liquids, Sci. Rep. 7 (2017) 2445.

DOI: 10.1038/s41598-017-01358-3

Google Scholar

[9] Z.H. Han, B. Yang, S.H. Kim, M.R. Zachariah, Application of hybrid sphere/carbon nanotube particles in nanofluids, Nanotechnology 18 (2007) 105701.

DOI: 10.1088/0957-4484/18/10/105701

Google Scholar

[10] M.J. Nine, B. Munkhbayar, M.S. Rahman, H. Chung, H. Jeong, Highly productive synthesis process of well dispersed Cu2O and Cu/Cu2O nanoparticles and its thermal characterization, Mater. Chem. Phys. 141 (2013) 636-642.

DOI: 10.1016/j.matchemphys.2013.05.032

Google Scholar

[11] J. Sarkar, P. Ghosh, A. Adil, A review on hybrid nanofluids: recent research, development and applications, Renewable and Sustainable Energy Reviews 43 (2015) 164–177.

DOI: 10.1016/j.rser.2014.11.023

Google Scholar

[12] M. Pan, L. Zheng, F. Liu, X. Zhang, Modeling heat transport in nanofluids with stagnation point flow using fractional calculus, Applied Mathematical Modelling 40 (2016) 8974-8984.

DOI: 10.1016/j.apm.2016.05.044

Google Scholar

[13] S. Aman, I. Khan, Z. Ismail, M.Z. Salleh, Applications of fractional derivatives to nanofluids: exact and numerical solutions. Mathematical Modelling of Natural Phenomena, 13(1), 2 (2018).

DOI: 10.1051/mmnp/2018013

Google Scholar

[14] C. Fetecau, D. Vieru and W.A. Azhar, Natural convection flow of fractional nanofluids over an isothermal vertical plate with thermal radiation, Applied Sciences 7 (2017) 247.

DOI: 10.3390/app7030247

Google Scholar