Novel Interdiffusion Analysis in Multicomponent Alloys - Part 2: Application to Quaternary, Quinary and Higher Alloys

Article Preview

Abstract:

A novel study of analysis interdiffusion in multicomponent alloys is investigated by means of closed form solutions and numerical simulations. Quaternary as well as selected CoCrFeMnNi (HEAs) quinary metallic systems are analysed using one, two and three diffusion couples with the full set of interdiffusion coefficients being calculated. A custom written Matlab fitting program (MFP) is used as the main tool for the simultaneous fitting into multiple composition profiles in both systems. The retrieved interdiffusion matrices are obtained using a newly developed approach that is interlinked with composition vectors, eigenvalues and eigenvector. On average, it can be concluded that the accuracy of the obtained matrices steadily improves with the increase of the number of couples used in the analysis.

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 29)

Pages:

179-203

Citation:

Online since:

April 2021

Export:

Price:

* - Corresponding Author

[1] V. Verma, A. Tripathi, T. Venkateswaran, and K. N. Kulkarni, First report on entire sets of experimentally determined interdiffusion coefficients in quaternary and quinary high-entropy alloys, J. Mat. Res. 35 (2020) 162-171.

DOI: 10.1557/jmr.2019.378

Google Scholar

[2] M. Dayananda, Interdiffusion in Multicomponent Systems, in Ordered Intermetallics—Physical Met. Mec. Beh.: Springer (1992).

Google Scholar

[3] A. Paul, A pseudobinary approach in multicomponent interdiffusion, arXiv preprint arXiv: 04460 (2015).

Google Scholar

[4] J. S. Kirkaldy and D. J. Young, Diffusion in the condensed state, The Institute of Metals 1 Carlton House Terrace London SW 1 Y 5 DB UK (1987).

Google Scholar

[5] S. H. Lam, Multicomponent diffusion revisited, Phys flu.18 (2006) 073101-8.

Google Scholar

[6] L. Onsager, Reciprocal relations in irreversible processes I, Phys. rev. 37 (1931) 405-426.

DOI: 10.1103/physrev.37.405

Google Scholar

[7] L. Onsager, Reciprocal relations in irreversible processes II, Phys. rev. 38 (1931) 2265-2279.

DOI: 10.1103/physrev.38.2265

Google Scholar

[8] L. Onsager, Theories and problems of liquid diffusion, Ann. New York Aca. Sci. 46 (1945) 241-265.

DOI: 10.1111/j.1749-6632.1945.tb36170.x

Google Scholar

[9] A. J. B. Vincent, A study of three multicomponent alloys, BSc Part II Thesis, Uni. Sussex UK (1981).

Google Scholar

[10] P. Knight, Multicomponent alloys (BSc Part II thesis), Uni. Oxford UK (1995).

Google Scholar

[11] B. Cantor, I. T. H. Chang, P. Knight, and A. J. B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mat. Sci. Eng.: A 375 (2004) 213-218.

DOI: 10.1016/j.msea.2003.10.257

Google Scholar

[12] J.-W. Yeh, S-K, Chen, S-J, Lin, J-Y, Gan, T-S, Chin, T‐T, Shun, C-H Tsau, S-Y, Chang, Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Adv. Eng. Mat. 6 (2004) 299-303.

DOI: 10.1002/adem.200300567

Google Scholar

[13] H. Kim, Procedures for Isothermal Diffusion Studies of Four-Component Systems1, J. Phys. Chem. 70 (1966) 562-575.

Google Scholar

[14] H. Kim, Combined use of various experimental techniques for the determination of nine diffusion coefficients in four-component systems, J. Phys. Chem. 73 (1969) 1716-1722.

DOI: 10.1021/j100726a015

Google Scholar

[15] L. Paduano, R. Sartorio, V. Vitagliano, J. G. Albright, and D. G. Miller, Measurement of the mutual diffusion coefficients at one composition of the four-component system. alpha.-cyclodextrin-L-phenylalanine-monobutylurea-water at 25. degree. C, J. Phys. Chem. 96 (1992) 7478-7483.

DOI: 10.1021/j100197a064

Google Scholar

[16] S. Siol, A. Holder, B. R. Ortiz, P. A. Parilla, E. Toberer, S. Lany and A. Zakutayev, Solubility limits in quaternary SnTe-based alloys, RSC Adv. 7 (2017) 24747-24753.

DOI: 10.1039/c6ra28219a

Google Scholar

[17] M. K. Stalker, J. E. Morral, and A. D. Romig, Application of the Square Root Diffusivity to Diffusion in Ni-Cr-Al-Mo Alloys, Met Trans. A 23 (1992) 3245-3249.

DOI: 10.1007/bf02663433

Google Scholar

[18] K. Kulkarni, A. Girgis, L. Ram-Mohan, and M. Dayananda, A transfer matrix analysis of quaternary diffusion, Phil. Maga. 87 (2007) 853-872.

DOI: 10.1080/14786430600993356

Google Scholar

[19] K. Kulkarni and M. A. Dayananda, A Transfer Matrix Analysis of a Quaternary Cu-Ni-Zn-Mn Diffusion Couple, Mat. Sci. Tech.-Asso. Iron Steel Tech. 2 (2006) 155-162.

Google Scholar

[20] K. Kulkarni and G. P. S. Chauhan, Investigations of quaternary interdiffusion in a constituent system of high entropy alloys, AIP Adv. 5 (2015) 097162-7.

DOI: 10.1063/1.4931806

Google Scholar

[21] A. Durand, L. Peng, G. Laplanche, J. Morris, E. George, and G. Eggeler, Interdiffusion in Cr–Fe–Co–Ni medium-entropy alloys, Intermetallics 122 (2020) 1-15.

DOI: 10.1016/j.intermet.2020.106789

Google Scholar

[22] K.-Y. Tsai, M.-H. Tsai, and J.-W. Yeh, Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys, Acta Mat. 61 (2013) 4887-4897.

DOI: 10.1016/j.actamat.2013.04.058

Google Scholar

[23] J. Dąbrowa, W. Kucza, G. Cieślak, T. Kulik, M. Danielewski, and J.-W. Yeh, Interdiffusion in the FCC-structured Al-Co-Cr-Fe-Ni high entropy alloys: Experimental studies and numerical simulations, J. Alloys Comp. 674 (2016) 455-462.

DOI: 10.1016/j.jallcom.2016.03.046

Google Scholar

[24] W. Kucza, J. Dąbrowa, G. Cieślak, K. Berent, T. Kulik, and M. Danielewski, Studies of sluggish diffusion, effect in Co-Cr-Fe-Mn-Ni, Co-Cr-Fe-Ni and Co-Fe-Mn-Ni high entropy alloys; determination of tracer diffusivities by combinatorial approach, J. Alloys and Comp. 731 (2018) 920-928.

DOI: 10.1016/j.jallcom.2017.10.108

Google Scholar

[25] J. Dąbrowa, M. Zajusz, W. Kucza, M. Cieslak, K. Barent, T. Czeppe, T. Kulik and M. Danielewski, Demystifying the sluggish diffusion effect in high entropy alloys, J. Alloys Comp. 783 (2019) 193-207.

DOI: 10.1016/j.jallcom.2018.12.300

Google Scholar

[26] D. Gaertner, K. Abrahams, K. Josua, V. A. Esin, I. Steinbach, G Wilde, S. V. Divinski, Concentration-dependent atomic mobilities in FCC CoCrFeMnNi high-entropy alloys, Acta Mat. 166 (2019) 357-370.

DOI: 10.1016/j.actamat.2018.12.033

Google Scholar

[27] T. Nagase, Y. Iijima, A. Matsugaki, K. Ameyama, and T. Nakano, Design and fabrication of Ti–Zr-Hf-Cr-Mo and Ti–Zr-Hf-Co-Cr-Mo high-entropy alloys as metallic biomaterials, Mat. Sci. Engi.: C 107 (2020) 1-9.

DOI: 10.1016/j.msec.2019.110322

Google Scholar

[28] S. Uporov, R. Ryltsev, V. Bykov, S. K. Estemirova, and D. Zamyatin, Microstructure, phase formation and physical properties of AlCoCrFeNiMn high-entropy alloy, J. Alloys Comp. 820 (2019) 1-8.

DOI: 10.1016/j.jallcom.2019.153228

Google Scholar

[29] Y. Cai, L. Zhu, Y. Cui, K. Geng, S. M. Manladan, Z. Luo, J. Han, Strengthening mechanisms in multi-phase FeCoCrNiAl1.0 high-entropy alloy cladding layer, Mat. Char. 159 (2020) 1-12.

DOI: 10.1016/j.matchar.2019.110037

Google Scholar

[30] J. M. Park, J. Choe, J. G. Kim, J. W. Bae, J. Moon, S. Yang, K. T. Kim, J. H. Yu, H. S. Kim, Superior tensile properties of 1% C-CoCrFeMnNi high-entropy alloy additively manufactured by selective laser melting, Mat. Res. Let. 8 (2020) 1-7.

DOI: 10.1080/21663831.2019.1638844

Google Scholar

[31] T. R. Paul, I. V. Belova, and G. E. Murch, Analysis of diffusion in high entropy alloys, Mat. Che. Phys. 210 (2017) 301-308.

Google Scholar

[32] M. Vaidya, S. Trubel, B. Murty, G. Wilde, and S. V. Divinski, Ni tracer diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys, J. Alloys Comp. 688 (2016) 994-1001.

DOI: 10.1016/j.jallcom.2016.07.239

Google Scholar

[33] W. Chen and L. Zhang, High-throughput determination of interdiffusion coefficients for Co-Cr-Fe-Mn-Ni high-entropy alloys, JPED 38 (2017), 457-465.

DOI: 10.1007/s11669-017-0569-0

Google Scholar

[34] W. Chen, J. Zhong, and L. Zhang, An augmented numerical inverse method for determining the composition-dependent interdiffusivities in alloy systems by using a single diffusion couple, MRS Com. 6 (2016) 295-300.

DOI: 10.1557/mrc.2016.21

Google Scholar

[35] C. Zhang, F. Zhang, K. Jin, H. Bei, S. Chen, W. Cao, J. Zhu and, D. Lv, Understanding of the Elemental Diffusion Behavior in Concentrated Solid Solution Alloys, JPED 38 (2017) 434-444.

DOI: 10.1007/s11669-017-0580-5

Google Scholar

[36] M. Afikuzzaman, I. V. Belova, and G. E. Murch, Investigation of Interdiffusion in High Entropy Alloys: Application of the Random Alloy Model, Diff. Found. 22 (2019) 94-108.

DOI: 10.4028/www.scientific.net/df.22.94

Google Scholar

[37] M. Afikuzzaman, I. V. Belova, and G. E. Murch, Novel Interdiffusion Analysis in Multicomponent Alloys. Part 1: Application to Ternary Alloys, Diff. Found. Submitted for publication (2021).

DOI: 10.4028/www.scientific.net/df.29.161

Google Scholar

[38] I. V. Belova, M. Afikuzzaman and G. E. Murch, New approach for interdiffusion analysis of multicomponent alloys, Scripta Mat. Submitted for publication.

DOI: 10.1016/j.scriptamat.2021.114143

Google Scholar

[39] I. V. Belova and G. E. Murch, Test of the validity of the Darken/Manning relation for diffusion in ordered alloys taking the L12 structure, Phil. Mag. A 78 (1998) 1085-1092.

DOI: 10.1080/01418619808239976

Google Scholar

[40] J.-M. Philibert, Atom movements-Diffusion and mass transport in solids, EDP Sciences (2012).

Google Scholar