A Review of Synthesis Methods, Properties and Use of Hydroxyapatite as a Substitute of Bone

Article Preview

Abstract:

In recent years, a significant achievement has been made in developing biomaterials, in particular the design of bioceramics, from natural sources for various biomedical applications. In this review, we discuss the fundamentals of structure, function and characteristics of human bone, its calcium and phosphate composition, role and importance of bioceramics for bone repairing or regeneration. This review also outlines various isolation techniques and the application of novel marine-derived hydroxyapatite (HA) and tri-calcium phosphate (TCP) for biocomposites engineering, and their potentials for bone substitute and bone regeneration.

You might also be interested in these eBooks

Info:

Pages:

98-117

Citation:

Online since:

October 2015

Export:

Price:

* - Corresponding Author

[1] J.E. Shea, S.C. Miller, Skeletal function and structure: Implications for tissue-targeted therapeutics, Adv Drug Del Rev, 57 (2005) 945-957.

DOI: 10.1016/j.addr.2004.12.017

Google Scholar

[2] B.L. Seal, T.C. Otero, A. Panitch, Polymeric biomaterials for tissue and organ regeneration, Materials Science and Engineering: R: Reports, 34 (2001) 147-230.

DOI: 10.1016/s0927-796x(01)00035-3

Google Scholar

[3] D. Knaack, M.E.P. Goad, M. Aiolova, et al., Resorbable calcium phosphate bone substitute, J Biomed Mater Res, 43 (1998) 399-409.

DOI: 10.1002/(sici)1097-4636(199824)43:4<399::aid-jbm7>3.0.co;2-j

Google Scholar

[4] M. El Haddad, A. Regti, R. Slimani, et al., Assessment of the biosorption kinetic and thermodynamic for the removal of safranin dye from aqueous solutions using calcined mussel shells, Journal of Industrial and Engineering Chemistry, 20 (2014).

DOI: 10.1016/j.jiec.2013.05.038

Google Scholar

[5] K.A. Hing, Bone repair in the twenty–first century: biology, chemistry or engineering?, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 362 (2004) 2821-2850.

DOI: 10.1098/rsta.2004.1466

Google Scholar

[6] W. Suchanek, M. Yoshimura, Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants, J Mater Res, 13 (1998) 94-117.

DOI: 10.1557/jmr.1998.0015

Google Scholar

[7] S. Meski, S. Ziani, H. Khireddine, Removal of Lead Ions by Hydroxyapatite Prepared from the Egg Shell, J Chem Eng Data, 55 (2010) 3923-3928.

DOI: 10.1021/je901070e

Google Scholar

[8] S. Li, J. Wang, X. Jing, et al., Conversion of Calcined Eggshells into Flower-Like Hydroxyapatite Agglomerates by Solvothermal Method Using Hydrogen Peroxide/N, N-Dimethylformamide Mixed Solvents, J Am Ceram Soc, 95 (2012) 3377-3379.

DOI: 10.1111/j.1551-2916.2012.05458.x

Google Scholar

[9] N. Elizondo-Villarreal, A. Martínez-de-la-Cruz, R.O. Guerra, et al., Biomaterials from Agricultural Waste: Eggshell-based Hydroxyapatite, Water, Air, Soil Pollut, 223 (2012) 3643-3646.

DOI: 10.1007/s11270-012-1137-1

Google Scholar

[10] X. Wang, Q. Ni, Determination of cortical bone porosity and pore size distribution using a low field pulsed NMR approach, J Orthop Res, 21 (2003) 312-319.

DOI: 10.1016/s0736-0266(02)00157-2

Google Scholar

[11] S. -C. Wu, H. -C. Hsu, Y. -N. Wu, et al., Hydroxyapatite synthesized from oyster shell powders by ball milling and heat treatment, Materials Charact, 62 (2011) 1180-1187.

DOI: 10.1016/j.matchar.2011.09.009

Google Scholar

[12] P. Álvarez-Lloret, A.B. Rodríguez-Navarro, G. Falini, et al., Crystallographic Control of the Hydrothermal Conversion of Calcitic Sea Urchin Spine (Paracentrotus lividus) into Apatite, Cryst. Growth Des, 10 (2010) 5227-5232.

DOI: 10.1021/cg101012a

Google Scholar

[13] Y. -P. Guo, Y. -b. Yao, C. -Q. Ning, et al., Fabrication of mesoporous carbonated hydroxyapatite microspheres by hydrothermal method, Mater Lett, 65 (2011) 2205-2208.

DOI: 10.1016/j.matlet.2011.04.057

Google Scholar

[14] A.A. Jahangir;, R.M. Nunley;, S. Mehta;, et al., Bone-graft substitutes in orthopaedic surgery, American Academy of Orthopaedic Surgeons, ( 2008).

Google Scholar

[15] S.B. Greenwald, Scott; Goldberg, Victor, Khan, Yusuf, K.R. Laurencin, Randy, Bone graf substitiues: facts, fictions and applications, New Orleans, Louisiana, (2003).

Google Scholar

[16] J.N.A. Requicha Ferreira, Engineering Hydroxyapatite-Gelatin Nanocomposites With Mapc Cells For Calvarium Bone Regeneration University of North Carolina at Chapel Hill, 2011, p.170.

Google Scholar

[17] G.F. Rogers, A.K. Greene, Autogenous Bone Graft: Basic Science and Clinical Implications, J Craniofac Surg, 23 (2012) 323-327 310. 1097/SCS. 1090b1013e318241dcba.

DOI: 10.1097/scs.0b013e318241dcba

Google Scholar

[18] S.S. Jensen, N. Broggini, E. Hjørting-Hansen, et al., Bone healing and graft resorption of autograft, anorganic bovine bone and β-tricalcium phosphate. A histologic and histomorphometric study in the mandibles of minipigs, Clin Oral Implants Res, 17 (2006).

DOI: 10.1111/j.1600-0501.2005.01257.x

Google Scholar

[19] N. Neelakandeswari, G. Sangami, N. Dharmaraj, Preparation and Characterization of Nanostructured Hydroxyapatite Using a Biomaterial, Synth React Inorg M, 41 (2011) 513-516.

DOI: 10.1080/15533174.2011.568434

Google Scholar

[20] J.A. Goulet, L.E. Senunas, G.L. DeSilva, et al., Autogenous Iliac Crest Bone Graft: Complications and Functional Assessment, Clin Orthop Relat Res, 339 (1997) 76-81.

DOI: 10.1097/00003086-199706000-00011

Google Scholar

[21] S. Dorozhkin, Calcium orthophosphate coatings, films and layers, Progress in Biomaterials, 1 (2012) 1.

Google Scholar

[22] X. Li, R. Cui, W. Liu, et al., The Use of Nanoscaled Fibers or Tubes to Improve Biocompatibility and Bioactivity of Biomedical Materials, Journal of Nanomaterials, 2013 (2013) 16.

DOI: 10.1155/2013/728130

Google Scholar

[23] M. van der Elst, A.R.A. Dijkema, C.P.A.T. Klein, et al., Tissue reaction on PLLA versus stainless steel interlocking nails for fracture fixation: An animal study, Biomaterials, 16 (1995) 103-106.

DOI: 10.1016/0142-9612(95)98270-o

Google Scholar

[24] M. Todo, S.D. Park, K. Arakawa, et al., Relationship between microstructure and fracture behavior of bioabsorbable HA/PLLA composites, Composites Part A: Applied Science and Manufacturing, 37 (2006) 2221-2225.

DOI: 10.1016/j.compositesa.2005.10.001

Google Scholar

[25] R. Kane, P.X. Ma, Mimicking the nanostructure of bone matrix to regenerate bone, Mater Today, 16 (2013) 418-423.

DOI: 10.1016/j.mattod.2013.11.001

Google Scholar

[26] J. -M. Mbuyi-Muamba, J. Dequeker, G. Gevers, Biochemistry of bone, Baillieres Clin Rheumatol, 2 (1988) 63-101.

DOI: 10.1016/s0950-3579(88)80005-0

Google Scholar

[27] E.F. Morgan, G.L. Barnes, T.A. Einhorn, Chapter 1 - The Bone Organ System: Form and Function, in: R. Marcus, D. Feldman, et al. (Eds. ) Osteoporosis (Fourth Edition), Academic Press, San Diego, 2013, pp.3-20.

Google Scholar

[28] G. Karlis A, B. Christopher C, Biomedical application of apatites (in Phosphates; geochemical, geobiological, and materials importance ), Rev Mineral Geochem, 48 (2002) 631-672.

DOI: 10.1515/9781501509636-020

Google Scholar

[29] http: /www. aap. de/en/products/biomaterials, aap Implant AG.

Google Scholar

[30] http: /www. actifusebonegraft. com/us/actifuse-products. html, ACTIFUSE Bone Graft Substitute.

Google Scholar

[31] http: /www. hydroxyapatite. com/, Berkely advanced biomaterials.

Google Scholar

[32] http: /www. biocomposites. com/ortho/biocomposites_biologics. asp, Biocomposites, The Next Regeneration.

Google Scholar

[33] http: /nl. biomet. be/viewversion. cfm?contentversionid=16830&sc=1, Biomet.

Google Scholar

[34] http: /www. cambioceramics. com/nl/3203-Home. html, cambioceramics.

Google Scholar

[35] http: /www. ceramisys. com/, ceramisys Bone Graft Substitue.

Google Scholar

[36] http: /www. curasan. de/com/products/orthopedics/cerasorb/brief_description. php, curasan Regenerative Medicine.

Google Scholar

[37] http: /www. depuy. com/about-depuy/depuy-divisions/depuy-spine, DePuy Spine, Inc.

DOI: 10.15760/honors.338

Google Scholar

[38] http: /www. dot-coating. de/unternehmen/, DOT medical implant solutions.

Google Scholar

[39] http: /www. exac. com/products, Exactech A great Day in the O. R.

Google Scholar

[40] http: /www. integralife. com/index. aspx?redir=orthobiologics, INTEGRA Limit Uncertainty.

Google Scholar

[41] http: /www. kasios. com/index. html, Kasios.

Google Scholar

[42] http: /kyocera-md. com/, Kyocera Medical.

Google Scholar

[43] http: /www. taisho. co. jp/en/, Taisho Pharmaceutical Co., Ltd.

Google Scholar

[44] http: /www. biomaterial. co. jp/en/products/index. html, olympus terumo biomaterials corp.

Google Scholar

[45] http: /www. stryker. com/en-us/products/Trauma/index. htm, Stryker.

Google Scholar

[46] https: /www. botiss. com/en/content/cerabone%C2%AE, Botiss biomaterials.

Google Scholar

[47] http: /www. bone. pentax. jp/newceramics_e. php, Pentax.

Google Scholar

[48] http: /www. wmt. com/physicians/products/biologics/OSTEOSETResorbableMiniBeadKit. asp, WRIGHT.

Google Scholar

[49] http: /www. zimmer. com/en-GB/hcp/spine/product/copios-bone-void1. jspx, Zimmer.

Google Scholar

[50] http: /www. eincobio. com. br/2011/port/index/index. php, EincoBio.

Google Scholar

[51] J.R. Jones, P.D. Lee, L.L. Hench, Hierarchical porous materials for tissue engineering, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 364 (2006) 263-281.

DOI: 10.1098/rsta.2005.1689

Google Scholar

[52] J. Parvizi, High Yield Orthopaedics, Saunders/Elsevier2010.

Google Scholar

[53] A.R. Boccaccini, J. Gough, Tissue Engineering Using Ceramics and Polymers, Elsevier Science2007.

Google Scholar

[54] A. Jillavenkatesa, R.A. Condrate Sr, Sol–gel processing of hydroxyapatite, J Mater Sci, 33 (1998) 4111-4119.

DOI: 10.1023/a:1004436732282

Google Scholar

[55] W.B. Matthew, Nanoparticulate hydroxyapatite and calcium-based CO2 sorbents, School of Process, Environmental and Materials Engineering, University of Leeds, 2012, p.350.

Google Scholar

[56] R.O. Ritchie, M.J. Buehler, P. Hansma, Plasticity and toughness in bone, Print edition, 62 (2009) 41-47.

Google Scholar

[57] R.Z. LeGeros, R. Kijkowska, C. Bautista, et al., Synergistic effects of magnesium and carbonate on properties of biological and synthetic apatites, Connect Tissue Res, 33 (1995) 203-209.

DOI: 10.3109/03008209509017003

Google Scholar

[58] E. Horowitz, J.E. Parr, Characterization and Performance of Calcium Phosphate Coatings for Implants, ASTM.

Google Scholar

[59] K.U. Lewandrowski, D.L. Wise, M.J. Yaszemski, et al., Tissue Engineering And Biodegradable Equivalents, Scientific And Clinical Applications, Taylor & Francis2002.

Google Scholar

[60] A.L. Boskey, A.S. Posner, In vitro nucleation of hydroxyapatite by a bone calcium-phospholipid-phosphate complex, Calcif Tissue Res, 22 (1976) 197-201.

DOI: 10.1007/bf02064064

Google Scholar

[61] L.L. Hench, (ii) The challenge of orthopaedic materials, Curr Orthop, 14 (2000) 7-15.

Google Scholar

[62] M. Akao, H. Aoki, Y. Yamamoto, et al., Cytotoxicity of hydroxyapatite-polyacrylic acid cement, Iyo Kizai Kenkyujo hokoku. Reports of the Institute for Medical and Dental Engineering, Tokyo Medical and Dental University, 20 (1986) 19-23.

Google Scholar

[63] M. Akao, N. Miura, H. Aoki, Fracture toughness of sintered hydroxyapatite and beta -tricalcium phosphate, Yogyo Kyokai Shi/Journal of the Ceramic Society of Japan, 92 (1984) 672-674.

DOI: 10.2109/jcersj1950.92.1071_672

Google Scholar

[64] C.M. Holden, G.W. Bernard, Ultrastructural in vitro characterization of a porous hydroxyapatite/bone cell interface, The Journal of oral implantology, 16 (1990) 86-95.

Google Scholar

[65] J. Huang, L. Di Silvio, M. Wang, et al., In vitro mechanical and biological assessment of hydroxyapatite-reinforced polyethylene composite, J Mater Sci Mater Med, 8 (1997) 775-779.

Google Scholar

[66] Y.E. Greish, P.W. Brown, Characterization of bioactive glass-reinforced HAP-polymer composites, J Biomed Mater Res, 52 (2000) 687-694.

DOI: 10.1002/1097-4636(20001215)52:4<687::aid-jbm13>3.0.co;2-k

Google Scholar

[67] C. Durucan, P.W. Brown, Calcium-deficient hydroxyapatite-PLGA composites: Mechanical and microstructural investigation, J Biomed Mater Res, 51 (2000) 726-734.

DOI: 10.1002/1097-4636(20000915)51:4<726::aid-jbm22>3.0.co;2-l

Google Scholar

[68] H. Wang, Y. Li, Y. Zuo, et al., Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering, Biomaterials, 28 (2007) 3338-3348.

DOI: 10.1016/j.biomaterials.2007.04.014

Google Scholar

[69] D. Huang, Y. Zuo, Q. Zou, et al., Reinforced nanohydroxyapatite/polyamide66 scaffolds by chitosan coating for bone tissue engineering, Journal of Biomedical Materials Research - Part B Applied Biomaterials, 100 B (2012) 51-57.

DOI: 10.1002/jbm.b.31921

Google Scholar

[70] M. Nakamura, A. Kobayashi, K. Nozaki, et al., Improvement of osteoblast adhesion through polarization of plasma-sprayed hydroxyapatite coatings on metal, Journal of Medical and Biological Engineering, 34 (2014) 44-48.

Google Scholar

[71] F.H. Albee, H.F. Morrison, Studies in Bone Growth: Triple Calcium Phosphate As A Stimulus to Osteogenesis, Ann Surg, 71 (1920) 32-39.

DOI: 10.1097/00000658-192001000-00006

Google Scholar

[72] K.A. Hing, Bone repair in the twenty-first century: biology, chemistry or engineering?, Philos Trans A Math Phys Eng Sci, 362 (2004) 2821-2850.

Google Scholar

[73] J. Park, Bioceramics: Properties, Characterizations, and Applications, Springer2009.

Google Scholar

[74] J.M. Rice, J.A. Hunt, J.A. Gallagher, et al., Quantitative assessment of the response of primary derived human osteoblasts and macrophages to a range of nanotopography surfaces in a single culture model in vitro, Biomaterials, 24 (2003).

DOI: 10.1016/s0142-9612(03)00381-8

Google Scholar

[75] M. Sadat-Shojai, M. -T. Khorasani, E. Dinpanah-Khoshdargi, et al., Synthesis methods for nanosized hydroxyapatite with diverse structures, Acta Biomater, 9 (2013) 7591-7621.

DOI: 10.1016/j.actbio.2013.04.012

Google Scholar

[76] A. Siddharthan, S.K. Seshadri, T.S.S. Kumar, Influence of microwave power on nanosized hydroxyapatite particles, Scripta Mater, 55 (2006) 175-178.

DOI: 10.1016/j.scriptamat.2006.03.044

Google Scholar

[77] A.S. Greenwald, S.D. Boden, V.M. Goldberg, et al., Bone-graft substitutes: facts, fictions, and applications, J Bone Joint Surg Am, 83 (2001) 98-103.

DOI: 10.2106/00004623-200100022-00007

Google Scholar

[78] J.A. Rihn, C. Gates, S.D. Glassman, et al., The Use of Bone Morphogenetic Protein in Lumbar Spine Surgery, The Journal of Bone & Joint Surgery, 90 (2008) 2014-(2025).

Google Scholar

[79] V.S. Gshalaev, A.C. Demirchan, Hydroxyapatite: Synthesis, Properties and Applications, Nova Science Publishers, Incorporated2012.

Google Scholar

[80] K.J. Burg, S. Porter, J.F. Kellam, Biomaterial developments for bone tissue engineering, Biomaterials, 21 (2000) 2347-2359.

DOI: 10.1016/s0142-9612(00)00102-2

Google Scholar

[81] S. Pramanik, A.K. Agarwal, K.N. Rai, et al., Development of high strength hydroxyapatite by solid-state-sintering process, Ceram Int, 33 (2007) 419-426.

DOI: 10.1016/j.ceramint.2005.10.025

Google Scholar

[82] P. Habibovic, H. Yuan, C.M. van der Valk, et al., 3D microenvironment as essential element for osteoinduction by biomaterials, Biomaterials, 26 (2005) 3565-3575.

DOI: 10.1016/j.biomaterials.2004.09.056

Google Scholar

[83] A.C. Jones, B. Milthorpe, H. Averdunk, et al., Analysis of 3D bone ingrowth into polymer scaffolds via micro-computed tomography imaging, Biomaterials, 25 (2004) 4947-4954.

DOI: 10.1016/j.biomaterials.2004.01.047

Google Scholar

[84] D.L. Kaplan, Mollusc shell structures: novel design strategies for synthetic materials, Curr Opin Solid St M, 3 (1998) 232-236.

DOI: 10.1016/s1359-0286(98)80096-x

Google Scholar

[85] A.Y.M. Lin, M.A. Meyers, K.S. Vecchio, Mechanical properties and structure of Strombus gigas, Tridacna gigas, and Haliotis rufescens sea shells: A comparative study, Mat Sci Eng C, 26 (2006) 1380-1389.

DOI: 10.1016/j.msec.2005.08.016

Google Scholar

[86] S. Camprasse, G. Camprasse, M. Pouzol, et al., Artificial dental root made of natural calcium carbonate (bioracine), Clin Mater, 5 (1990) 235-250.

DOI: 10.1016/0267-6605(90)90022-n

Google Scholar

[87] M. Lamghari, M.J. Almeida, S. Berland, et al., Stimulation of bone marrow cells and bone formation by nacre: in vivo and in vitro studies, Bone, 25 (1999) 91S-94S.

DOI: 10.1016/s8756-3282(99)00141-6

Google Scholar

[88] O. Keefe, R.J. a. n. d.J. Mao, Bone tissue engineering and regeneration: from discovery to the clinic-an overview, Tissue engineering. Part B, Reviews, (2011) 389-392.

DOI: 10.1089/ten.teb.2011.0475

Google Scholar

[89] L. Di Silvio, M.J. Dalby, W. Bonfield, Osteoblast behaviour on HA/PE composite surfaces with different HA volumes, Biomaterials, 23 (2002) 101-107.

DOI: 10.1016/s0142-9612(01)00084-9

Google Scholar

[90] E.S. Thian, T. Konishi, Y. Kawanobe, et al., Zinc-substituted hydroxyapatite: a biomaterial with enhanced bioactivity and antibacterial properties, J Mater Sci Mater Med, 24 (2013) 437-445.

DOI: 10.1007/s10856-012-4817-x

Google Scholar

[91] A.F. Khan, M. Saleem, A. Afzal, et al., Bioactive behavior of silicon substituted calcium phosphate based bioceramics for bone regeneration, Materials Science and Engineering: C, 35 (2014) 245-252.

DOI: 10.1016/j.msec.2013.11.013

Google Scholar

[92] K. Hing, I. Gibson, P. Revell, et al., Influence of phase purity on the in vivo response to hydroxyapatite, Bioceramics (2000) 373 - 376.

DOI: 10.4028/www.scientific.net/kem.192-195.373

Google Scholar

[93] M. Vallet-Regi, D. Arcos, Silicon substituted hydroxyapatites. A method to upgrade calcium phosphate based implants, J Mater Chem, 15 (2005) 1509-1516.

DOI: 10.1039/b414143a

Google Scholar

[94] Y.L. Chang, C.M. Stanford, J.C. Keller, Calcium and phosphate supplementation promotes bone cell mineralization: implications for hydroxyapatite (HA)-enhanced bone formation, J Biomed Mater Res, 52 (2000) 270-278.

DOI: 10.1002/1097-4636(200011)52:2<270::aid-jbm5>3.0.co;2-1

Google Scholar

[95] C. Wang, Y. Duan, B. Markovic, et al., Phenotypic expression of bone-related genes in osteoblasts grown on calcium phosphate ceramics with different phase compositions, Biomaterials, 25 (2004) 2507-2514.

DOI: 10.1016/j.biomaterials.2003.09.035

Google Scholar

[96] C. Cardemil, I. Elgali, W. Xia, et al., Strontium-Doped Calcium Phosphate and Hydroxyapatite Granules Promote Different Inflammatory and Bone Remodelling Responses in Normal and Ovariectomised Rats, PLoS One, 8 (2013) e84932.

DOI: 10.1371/journal.pone.0084932

Google Scholar

[97] J. Handschel, H.P. Wiesmann, U. Stratmann, et al., TCP is hardly resorbed and not osteoconductive in a non-loading calvarial model, Biomaterials, 23 (2002) 1689-1695.

DOI: 10.1016/s0142-9612(01)00296-4

Google Scholar

[98] S.J. Kalita, S. Verma, Nanocrystalline hydroxyapatite bioceramic using microwave radiation: Synthesis and characterization, Mater Sci Eng C, 30 (2010) 295-303.

DOI: 10.1016/j.msec.2009.11.007

Google Scholar

[99] G.S. Kumar, A. Thamizhavel, E.K. Girija, Microwave conversion of eggshells into flower-like hydroxyapatite nanostructure for biomedical applications, Mater Lett, 76 (2012) 198-200.

DOI: 10.1016/j.matlet.2012.02.106

Google Scholar

[100] P.S. Eggli, W. Moller, R.K. Schenk, Porous Hydroxyapatite and Tricalcium Phosphate Cylinders with Two Different Pore Size Ranges Implanted in the Cancellous Bone of Rabbits: A Comparative Histomorphometric and Histologic Study of Bony Ingrowth and Implant Substitution, Clin Orthop Relat Res, 232 (1988).

DOI: 10.1097/00003086-198807000-00017

Google Scholar

[101] A. Lak, M. Mazloumi, M.S. Mohajerani, et al., Rapid Formation of Mono-Dispersed Hydroxyapatite Nanorods with Narrow-Size Distribution via Microwave Irradiation, J Am Ceram Soc, 91 (2008) 3580-3584.

DOI: 10.1111/j.1551-2916.2008.02690.x

Google Scholar

[102] S. Meejoo, W. Maneeprakorn, P. Winotai, Phase and thermal stability of nanocrystalline hydroxyapatite prepared via microwave heating, Thermochim Acta, 447 (2006) 115-120.

DOI: 10.1016/j.tca.2006.04.013

Google Scholar

[103] S. Sarig, F. Kahana, Rapid formation of nanocrystalline apatite, J Cryst Growth, 237–239, Part 1 (2002) 55-59.

DOI: 10.1016/s0022-0248(01)01850-4

Google Scholar

[104] H. Arami, M. Mohajerani, M. Mazloumi, et al., Rapid formation of hydroxyapatite nanostrips via microwave irradiation, J alloy compd, 469 (2009) 391-394.

DOI: 10.1016/j.jallcom.2008.01.116

Google Scholar

[105] A. Shavandi, A.E. -D. Bekhit, A. Ali, et al., Synthesis of nano-hydroxyapatite (nHA) from waste mussel shells using a rapid microwave method, Mater Chem Phys, 149–150 (2015) 607-616.

DOI: 10.1016/j.matchemphys.2014.11.016

Google Scholar

[106] T.S. Gross, S. Srinivasan, C.C. Liu, et al., Noninvasive Loading of the Murine Tibia: An In Vivo Model for the Study of Mechanotransduction, J Bone Miner Res, 17 (2002) 493-501.

DOI: 10.1359/jbmr.2002.17.3.493

Google Scholar

[107] A. Torcasio, G.H. van Lenthe, H. Van Oosterwyck, The importance of loading frequency, rate and vibration for enhancing bone adaptation and implant osseointegration, Eur Cell Mater, 16 (2008) 56-68.

DOI: 10.22203/ecm.v016a07

Google Scholar

[108] M.A. Giardina, M.A. Fanovich, Synthesis of nanocrystalline hydroxyapatite from Ca(OH)2 and H3PO4 assisted by ultrasonic irradiation, Ceram Int, 36 (2010) 1961-(1969).

DOI: 10.1016/j.ceramint.2010.05.008

Google Scholar

[109] M. Salarian, M. Solati-Hashjin, S.S. Shafiei, et al., Template-directed hydrothermal synthesis of dandelion-like hydroxyapatite in the presence of cetyltrimethylammonium bromide and polyethylene glycol, Ceram Int, 35 (2009) 2563-2569.

DOI: 10.1016/j.ceramint.2009.02.031

Google Scholar

[110] F. Ye, H. Guo, H. Zhang, et al., Polymeric micelle-templated synthesis of hydroxyapatite hollow nanoparticles for a drug delivery system, Acta Biomater, 6 (2010) 2212-2218.

DOI: 10.1016/j.actbio.2009.12.014

Google Scholar

[111] V. Karageorgiou, D. Kaplan, Porosity of 3D biomaterial scaffolds and osteogenesis, Biomaterials, 26 (2005) 5474-5491.

DOI: 10.1016/j.biomaterials.2005.02.002

Google Scholar

[112] K.L. Kilpadi, A.A. Sawyer, C.W. Prince, et al., Primary human marrow stromal cells and Saos-2 osteosarcoma cells use different mechanisms to adhere to hydroxylapatite, J Biomed Mater Res A, 68 (2004) 273-285.

DOI: 10.1002/jbm.a.20043

Google Scholar

[113] N.A.M. Barakat, M.S. Khil, A.M. Omran, et al., Extraction of pure natural hydroxyapatite from the bovine bones bio waste by three different methods, J Mater Process Technol, 209 (2009) 3408-3415.

DOI: 10.1016/j.jmatprotec.2008.07.040

Google Scholar

[114] B. Chaudhuri, B. Mondal, D.K. Modak, et al., Preparation and characterization of nanocrystalline hydroxyapatite from egg shell and K2HPO4 solution, Mater Lett, 97 (2013) 148-150.

DOI: 10.1016/j.matlet.2013.01.082

Google Scholar

[115] D.A. Oliveira, P. Benelli, E.R. Amante, A literature review on adding value to solid residues: egg shells, Journal of Cleaner Production, 46 (2013) 42-47.

DOI: 10.1016/j.jclepro.2012.09.045

Google Scholar

[116] A. -R. Ibrahim, W. Wei, D. Zhang, et al., Conversion of waste eggshells to mesoporous hydroxyapatite nanoparticles with high surface area, Mater Lett, 110 (2013) 195-197.

DOI: 10.1016/j.matlet.2013.08.014

Google Scholar

[117] E. Tsuruga, H. Takita, H. Itoh, et al., Pore Size of Porous Hydroxyapatite as the Cell-Substratum Controls BMP-Induced Osteogenesis, J Biochem, 121 (1997) 317-324.

DOI: 10.1093/oxfordjournals.jbchem.a021589

Google Scholar

[118] Boonyang U, Chaopanich P, Wongchaisuwat A, et al., Effect of phosphate precursor on the production of hydroxyapatite from crocodile eggshells. , J Biomim Biomater Tissue Eng, 5 (2010) 31-37.

DOI: 10.4028/www.scientific.net/jbbte.5.31

Google Scholar

[119] S. -C. Wu, H. -C. Hsu, S. -K. Hsu, et al., Preparation and characterization of four different compositions of calcium phosphate scaffolds for bone tissue engineering, Materials Charact, 62 (2011) 526-534.

DOI: 10.1016/j.matchar.2011.03.014

Google Scholar

[120] C.Y. Zhang, H. Lu, Z. Zhuang, et al., Nano-hydroxyapatite/poly(L-lactic acid) composite synthesized by a modified in situ precipitation: preparation and properties, J Mater Sci Mater Med, 21 (2010) 3077-3083.

DOI: 10.1007/s10856-010-4161-y

Google Scholar

[121] J. Behari, Biophysical Bone Behaviour: Principles and Applications, Wiley2009.

Google Scholar

[122] S. -C. Wu, H. -K. Tsou, H. -C. Hsu, et al., A hydrothermal synthesis of eggshell and fruit waste extract to produce nanosized hydroxyapatite, Ceram Int, 39 (2013) 8183-8188.

DOI: 10.1016/j.ceramint.2013.03.094

Google Scholar

[123] U. Ripamonti, L.C. Roden, L.F. Renton, Osteoinductive hydroxyapatite-coated titanium implants, Biomaterials, 33 (2012) 3813-3823.

DOI: 10.1016/j.biomaterials.2012.01.050

Google Scholar

[124] E.A. dos Santos, M. Farina, G.A. Soares, et al., Surface energy of hydroxyapatite and beta-tricalcium phosphate ceramics driving serum protein adsorption and osteoblast adhesion, J Mater Sci Mater Med, 19 (2008) 2307-2316.

DOI: 10.1007/s10856-007-3347-4

Google Scholar

[125] X. -L. Dong, H. -L. Zhou, T. Wu, et al., Behavior Regulation of Adsorbed Proteins via Hydroxyapatite Surface Texture Control, The Journal of Physical Chemistry B, 112 (2008) 4751-4759.

DOI: 10.1021/jp0768672

Google Scholar

[126] A.L. Rosa, M.M. Beloti, R. van Noort, Osteoblastic differentiation of cultured rat bone marrow cells on hydroxyapatite with different surface topography, Dent Mater, 19 (2003) 768-772.

DOI: 10.1016/s0109-5641(03)00024-1

Google Scholar

[127] B. Annaz, K.A. Hing, M. Kayser, et al., Porosity variation in hydroxyapatite and osteoblast morphology: a scanning electron microscopy study, J Microsc, 215 (2004) 100-110.

DOI: 10.1111/j.0022-2720.2004.01354.x

Google Scholar

[128] J.H. Shariffuddin, M.I. Jones, D.A. Patterson, Greener photocatalysts: Hydroxyapatite derived from waste mussel shells for the photocatalytic degradation of a model azo dye wastewater, Chem Eng Res Des, 91 (2013) 1693-1704.

DOI: 10.1016/j.cherd.2013.04.018

Google Scholar

[129] Y. Zhang, Y. Liu, X. Ji, et al., Flower-like agglomerates of hydroxyapatite crystals formed on an egg-shell membrane, Colloid Surface B, 82 (2011) 490-496.

DOI: 10.1016/j.colsurfb.2010.10.006

Google Scholar

[130] Z. Lu, S.I. Roohani-Esfahani, P.C. Kwok, et al., Osteoblasts on rod shaped hydroxyapatite nanoparticles incorporated PCL film provide an optimal osteogenic niche for stem cell differentiation, Tissue Eng Part A, 17 (2011) 1651-1661.

DOI: 10.1089/ten.tea.2010.0567

Google Scholar

[131] S.I. Roohani-Esfahani, S. Nouri-Khorasani, Z. Lu, et al., The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite-PCL composites, Biomaterials, 31 (2010).

DOI: 10.1016/j.biomaterials.2010.03.058

Google Scholar

[132] K.S. Vecchio, X. Zhang, J.B. Massie, et al., Conversion of sea urchin spines to Mg-substituted tricalcium phosphate for bone implants, Acta Biomater, 3 (2007) 785-793.

DOI: 10.1016/j.actbio.2007.03.009

Google Scholar

[133] K.S. Vecchio, X. Zhang, J.B. Massie, et al., Conversion of bulk seashells to biocompatible hydroxyapatite for bone implants, Acta Biomater, 3 (2007) 910-918.

DOI: 10.1016/j.actbio.2007.06.003

Google Scholar

[134] J.H.G. Rocha, A.F. Lemos, S. Agathopoulos, et al., Hydrothermal growth of hydroxyapatite scaffolds from aragonitic cuttlefish bones, Journal of Biomedical Materials Research Part A, 77A (2006) 160-168.

DOI: 10.1002/jbm.a.30566

Google Scholar

[135] X. Zhang, K.S. Vecchio, Creation of dense hydroxyapatite (synthetic bone) by hydrothermal conversion of seashells, Materials Science and Engineering: C, 26 (2006) 1445-1450.

DOI: 10.1016/j.msec.2005.08.007

Google Scholar