The Influence of Chromium Content on the Structural and Mechanical Properties of AlCrxFeCoNi High Entropy Alloys

Article Preview

Abstract:

Many high entropy alloy systems have been exploited in the past decade and among them AlCrFeCoNi alloy is widely studied. The structural and mechanical properties of AlCrxFeCoNi alloy was studied in this paper for different content of chromium (atomic ratio, x= 0.2 to 2.0 at. %). In this study, ten samples having different chemical composition were prepared from raw materials using RAV equipment, type MRF ABJ 900. The microstructure features, crystallite sizes and microhardness depends on chemical composition of the alloy. The microhardness values for AlCrxFeCoNi (x = 0.2 to 2 at. %) increases from 389.6 to 562.6 HV0.1. The maximum value of microhardness for the high entropy alloy AlCrxFeCoNi (x = 1), has been obtained for 20.55 wt% Cr and has the value 562.6 HV0.1.

You might also be interested in these eBooks

Info:

Pages:

23-28

Citation:

Online since:

August 2018

Export:

Price:

* - Corresponding Author

[1] Li, C., Zhao, M., Li, J.C., Jiang, Q, Journal of Alloys and Compounds 475 (2009) p.752–757.

Google Scholar

[2] Li, B.S., Wang, Y.P., Ren, M.X., Yang, C, Fu, H.Z., Materials Science and Engineering A 498 (2008) p.482–486.

Google Scholar

[3] C.M. Lin, H.L. Tsai, Intermetallics 19 (2011) pp.288-294.

Google Scholar

[4] Geanta, V., Voiculescu, I., Ştefănoiu, R., Savastru, D., Csaki, I., Patroi, D., Leonat, L. JOAM – Rapid Communications, Vol. 7, 11-12 (2013) pp.874-880.

Google Scholar

[5] Voiculescu, I., Geanta, V., Stefanoiu, R., & oth, Rev. Chim., Vol. 64, Issue: 12 (2013) pp.1441-1444.

Google Scholar

[6] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, Adv. Eng. Mater., 6 (5), (2004), p.299.

Google Scholar

[7] F.J. Wang, Y, Zhang, Materials Science and Engineering A 498, (2008), pp.214-216.

Google Scholar

[8] C.P. Lee, C.C. Chang, J.W. Yeh, H.C. Shih, Corrosion Science, 50 (2008), p.2063-(2060).

Google Scholar

[9] Y.P. Wang, B.S. Li, M.X. Ren, C. Yang, H.Z. Fu, Materials Science and Engineering A 491 (2008), pp.154-158.

Google Scholar

[10] K.B. Zhang, Z.Y. Fu, J.Y. Wang, H. Wang, Y.C. Wang, Materials Science and Engineering A 508 (2009), p.214 – 219.

Google Scholar

[11] C.T. Tsai, Y.L. Chen, M.H. Tsai, J.W. Yeh, T.T. Shun, S.K. Chen, Journal of Alloys and Compounds 486 (2009), pp.427-435.

Google Scholar

[12] L.H. Wen, H.C. Kou, J.S. Li, H. Chang, W.Y. Xue, L. Zhou, Intermetallics 17 (209), pp.266-269.

Google Scholar

[13] Y. Wang, S. Ma, S. Chen, Y. Zhang, J. Qiao, Acta Metall. Sin. (Eng. Let.), june 2013, Vol. 26, No.3, pp.277-284.

Google Scholar

[14] C.C. Juan, C.Y. Shu, C.W. Tsai, W.R. Wang, T.S. Sheu, J.W. Yeh, S.K. Chen, Intermetallics 32 (2013), pp.401-407.

Google Scholar

[15] Nahmany, M., Hooper, Z., Stern, A., Geantă, V., Voiculescu, I., Metallogr. Microstr. Anal., May 2016, Journal no. 13632.

Google Scholar

[16] Csaki, I., Ștefănoiu, R., Geantă, V., Voiculescu, I., Sohaciu, M.G., Soare, A., Popescu, G., Serghiuță, S., Rev. Chim, Vol. 67 (2016), No. 7, pp.1373-1377.

Google Scholar

[17] Ştefănoiu, R., Geantă, V., Voiculescu, I., Csaki, I., Ghiban, N., Rev. Chim., Vol. 65 (2014), No. 7, pp.819-821.

Google Scholar

[18] Nardin, M., Constitution of binary alloys, Second Edition, Bucharest, (2002).

Google Scholar