Close Accord on Particle Swarm Optimization Variants for Solving Non-Linear Optimal Reactive Power Dispatch Problem

Article Preview

Abstract:

This paper employs a comparative study between three recent versions of particle swarm optimization (PSO) algorithm to find the optimal scheduling of reactive power resources. Scheduling of reactive power resources is formulated as non-linear complex optimal reactive power dispatch (ORPD) problem. The main objective function of ORPD is to minimize the transmission power losses (Ploss). For this target, three modified versions, which present three variations applied on velocity equation of PSO algorithm, are considered. To achieve fair comparative study, the competitive versions are checked through 13 studied cases on IEEE 14-, 30-, 57- and 118-bus test systems. The effectiveness of these variations is proven for the non-linear complex optimization ORPD problem with different decision variables according to the system size. The obtained results confirm that these variations on PSO algorithm can make a noticeable reduction of Ploss at acceptable level in terms of power system operation view point.

You might also be interested in these eBooks

Info:

Pages:

88-105

Citation:

Online since:

January 2020

Export:

Price:

* - Corresponding Author

[1] A. M. Shaheen, R. A. El-Sehiemy, and S. M. Farrag, Adequate Planning of Shunt Power Capacitors Involving Transformer Capacity Release Benefit, IEEE Syst. J. 12(2018) 373-382.

DOI: 10.1109/jsyst.2015.2491966

Google Scholar

[2] H. Singh and L. Srivastava, Modified Differential Evolution algorithm for multi-objective VAR management, Int. J. Electr. Power Energy Syst. 55(2014) 731-740.

DOI: 10.1016/j.ijepes.2013.10.015

Google Scholar

[3] A. M. Shaheen, R. A. El-Sehiemy, and S. M. Farrag, A novel adequate bi-level reactive power planning strategy, Int. J. Electr. Power Energy Syst., 78 (2016) 897–909.

DOI: 10.1016/j.ijepes.2015.12.004

Google Scholar

[4] M. Mohseni-Bonab and A. Rabiee, Optimal reactive power dispatch: A review, and a new stochastic voltage stability constrained multi-objective model at the presence of uncertain wind power generation, IET Generation, Transmission and Distribution. 11.4 (2017) 815-829.

DOI: 10.1049/iet-gtd.2016.1545

Google Scholar

[5] A. A. Heidari, R. Ali Abbaspour, and A. Rezaee Jordehi, Gaussian bare-bones water cycle algorithm for optimal reactive power dispatch in electrical power systems, Appl. Soft Comput. J. 57 (2017) 657-671.

DOI: 10.1016/j.asoc.2017.04.048

Google Scholar

[6] ‏M. H. Sulaiman, Z. Mustaffa, M. R. Mohamed, and O. Aliman, Using the gray wolf optimizer for solving optimal reactive power dispatch problem, Appl. Soft Comput. J. 32 (2015) 286-292.

DOI: 10.1016/j.asoc.2015.03.041

Google Scholar

[7] A. M. Shaheen, R. A. El-Sehiemy, and S. M. Farrag, Integrated Strategies of Backtracking Search Optimizer for Solving Reactive Power Dispatch Problem, IEEE Syst. J. 2018. 12.1 (2016) 424-433.

DOI: 10.1109/jsyst.2016.2573799

Google Scholar

[8] K. Y. Lee, Optimal reactive power planning using evolutionary algorithms: a comparative study for evolutionary programming, evolutionary strategy, genetic algorithm, and linear programming, IEEE Trans. Power Syst., 13.1 (1998) 101-108.

DOI: 10.1109/59.651620

Google Scholar

[9] R. A. El-Sehiemy, A. A. A. El Ela, and A. Shaheen, A multi-objective fuzzy-based procedure for reactive power-based preventive emergency strategy. Int. J. Eng. Res. Africa, vol. 13 (2015) 91-102.

DOI: 10.4028/www.scientific.net/jera.13.91

Google Scholar

[10] S. Granville, Opiimal reactive dispatch through interior point methods, IEEE Trans. Power Syst. 9.1 (1994) 136-146.

DOI: 10.1109/59.317548

Google Scholar

[11] R.-M. Jan., and N. Chen. Application of the fast Newton-Raphson economic dispatch and reactive power/voltage dispatch by sensitivity factors to optimal power flow. IEEE transactions on energy conversion 10.2 (1995) 293-301.

DOI: 10.1109/60.391895

Google Scholar

[12] Q. H. Wu, Y. J. Cao, and J. Y. Wen, Optimal reactive power dispatch using an adaptive genetic algorithm, Int. J. Electr. Power Energy Syst. 20.8 (1998) 563-569.

DOI: 10.1016/s0142-0615(98)00016-7

Google Scholar

[13] A. A. Abou El-Ela, A. M. Kinawy, R. A. El-Sehiemy, and M. T. Mouwafi, Optimal reactive power dispatch using ant colony optimization algorithm, Electr. Eng. 93.2 (2011) 103-116.

DOI: 10.1007/s00202-011-0196-4

Google Scholar

[14] B. Shaw, V. Mukherjee, and S. P. Ghoshal, Solution of reactive power dispatch of power systems by an opposition-based gravitational search algorithm, Int. J. Electr. Power Energy Syst. 55 (2014) 29-40.

DOI: 10.1016/j.ijepes.2013.08.010

Google Scholar

[15] S. Duman, Y. Sönmez, U. Güvenç, and N. Yörükeren, Optimal reactive power dispatch using a gravitational search algorithm, IET Gener. Transm. Distrib. 6.6 (2012) 563-576.

DOI: 10.1049/iet-gtd.2011.0681

Google Scholar

[16] A. M. Shaheen, R. A. El-Sehiemy, and S. M. Farrag, A novel framework for power loss minimization by modified wind driven optimization algorithm, In 2018 International Conference on Innovative Trends in Computer Engineering (ITCE) (pp.344-349). IEEE.

DOI: 10.1109/itce.2018.8316648

Google Scholar

[17] Z. Wen, and Y. Liu. Multi-objective reactive power and voltage control based on fuzzy optimization strategy and fuzzy adaptive particle swarm. Int. J. Electr. Power Energy Syst. 30.9 (2008) 525-532.

DOI: 10.1016/j.ijepes.2008.04.005

Google Scholar

[18] C. Dai, W. Chen, Y. Zhu, and X. Zhang, Seeker optimization algorithm for optimal reactive power dispatch. IEEE Trans. Power Syst. 24.3 (2009) 1218-1231.

DOI: 10.1109/tpwrs.2009.2021226

Google Scholar

[19] A. M. Shaheen, R. A. El-Sehiemy, and S. M. Farrag. Optimal reactive power dispatch using backtracking search algorithm. Australian Journal of Electrical and Electronics Engineering 13.3 (2016) 200-210.

DOI: 10.1080/1448837x.2017.1325134

Google Scholar

[20] W. S.,Sakr, R. A. El-Sehiemy, and A. M. Azmy. Adaptive differential evolution algorithm for efficient reactive power management. Applied Soft Computing 53 (2017) 336-351.

DOI: 10.1016/j.asoc.2017.01.004

Google Scholar

[21] ‏ W. Yan, S. Lu, and D. C. Yu, A novel optimal reactive power dispatch method based on an improved hybrid evolutionary programming technique. IEEE Trans. Power Syst. 19.2 (2004) 913-918.

DOI: 10.1109/tpwrs.2004.826716

Google Scholar

[22] N. Amjady, H. Fatemi, and H. Zareipour, Solution of optimal power flow subject to security constraints by a new improved bacterial foraging method, IEEE Trans. Power Syst. 27.3 (2012) 1311-1323.

DOI: 10.1109/tpwrs.2011.2175455

Google Scholar

[23] A. F. Barakat, R. A. El-Sehiemy, M. Elsaid, and E. Osman, Solving Reactive Power Dispatch Problem by Using JAYA Optimization Algorithm, Int. J. Eng. Res. Africa, 36 (2018) 12–24.

DOI: 10.4028/www.scientific.net/jera.36.12

Google Scholar

[24] A. F. Barakat, R. A. El-Sehiemy, M. I. Elsayd, and E. Osman, An enhanced Jaya optimization algorithm (EJOA) for solving multi-objective ORPD problem. In 2019 International Conference on Innovative Trends in Computer Engineering (ITCE) (pp.479-484). IEEE‏‏.

DOI: 10.1109/itce.2019.8646363

Google Scholar

[25] M. Ghasemi, M. Taghizadeh, S. Ghavidel, J. Aghaei, and A. Abbasian, Solving optimal reactive power dispatch problem using a novel teaching-learning-based optimization algorithm,, Eng. Appl. Artif. Intell., 39 (2015): 100-108.

DOI: 10.1016/j.engappai.2014.12.001

Google Scholar

[26] R. P. Singh, V. Mukherjee, and S. P. Ghoshal, Optimal reactive power dispatch by particle swarm optimization with an aging leader and challengers, Appl. Soft Comput. J. 29 (2015) 298-309.

DOI: 10.1016/j.asoc.2015.01.006

Google Scholar

[27] Y. Li, P. P. Jing, D. F. Hu, B. H. Zhang, C. X. Mao, X. B. Ruan and D. F. Chang, Optimal reactive power dispatch using particle swarms optimization algorithm based Pareto optimal set. In Int. Symposium on Neural Networks, Springer, Berlin, Heidelberg (2009) 152-161.

DOI: 10.1007/978-3-642-01513-7_17

Google Scholar

[28] P. K. Roy, S. P. Ghoshal, and S. S. Thakur, Turbulent crazy particle swarm optimization technique for optimal reactive power dispatch. In World Congress on Nature & Biologically Inspired Computing (NaBIC), IEEE (2009) 1219-1224. ‏‏.

DOI: 10.1109/nabic.2009.5393791

Google Scholar

[29] ‏ V. Mini and S. K. TK, Diversity Enhanced Particle Swarm Optimization based Optimal Reactive Power Dispatch. Int. Conf. (TAP Energy), IEEE (2015) 170-175.

DOI: 10.1109/tapenergy.2015.7229612

Google Scholar

[30] . Polprasert, W. Ongsakul, and V. N. Dieu, Optimal reactive power dispatch using improved pseudo-gradient search particle swarm optimization. Electr. Power Components Syst. 44.5 (2016) 518-532.

DOI: 10.1080/15325008.2015.1112449

Google Scholar

[31] ‏ A. Askarzadeh and A. Rezazadeh, Optimization of PEMFC model parameters with a modified particle swarm optimization. Int. J. of Energy Research, 35.14 (2011) 1258-1265.

DOI: 10.1002/er.1787

Google Scholar

[32] J. Kennedy and R. C. Eberhart, A discrete binary version of the particle swarm algorithm. IEEE Int. conf. on systems, man and cybernetics. Computational cybernetics and simulation. 5 (1997) 4104-4108.

DOI: 10.1109/icsmc.1997.637339

Google Scholar

[33] A. A. Fathy, M. S. Elbages, R. A. El-Sehiemy, and F. M. Bendary, Static transmission expansion planning for realistic networks in Egypt,, Electr. Power Syst. Res. 151 (2017) 404-418.

DOI: 10.1016/j.epsr.2017.06.007

Google Scholar

[34] A. A. Abou-El-Ela, and R. A. El-Sehiemy. Optimized generation costs using a modified particle swarm optimization version., 2008 12th International Middle-East Power System Conference. IEEE, 2008.

DOI: 10.1109/mepcon.2008.4562392

Google Scholar

[35] M. Ghasemi, S. Ghavidel, M. M. Ghanbarian and A. Habibi. A new hybrid algorithm for optimal reactive power dispatch problem with discrete and continuous control variables. Appl. Soft Comput. J. 22 (2014) 126-140.

DOI: 10.1016/j.asoc.2014.05.006

Google Scholar

[36] M. Ghasemi, M. M. Ghanbarian, S. Ghavidel, S. Rahmani, and E. Mahboubi Moghaddam, Modified teaching learning algorithm and double differential evolution algorithm for optimal reactive power dispatch problem: A comparative study. Inf. Sci. (Ny).,278 (2014) 231-249.

DOI: 10.1016/j.ins.2014.03.050

Google Scholar

[37] R. P. Singh, V. Mukherjee and S. P. Ghoshal. Optimal reactive power dispatch by particle swarm optimization with an aging leader and challengers. Appl. Soft Comput. J. 29 (2015) 298-309.

DOI: 10.1016/j.asoc.2015.01.006

Google Scholar

[38] A. Rajan and T. Malakar, Optimal reactive power dispatch using hybrid Nelder–Mead simplex based firefly algorithm. Int. J. of Elec. Power & Energy Sys. 66 (2015) 9-24.

DOI: 10.1016/j.ijepes.2014.10.041

Google Scholar

[39] M. Mehdinejad, B. Mohammadi-Ivatloo, R. Dadashzadeh-Bonab and K. Zare, Solution of optimal reactive power dispatch of power systems using hybrid particle swarm optimization and imperialist competitive algorithms. Int. J. of Elec. Power & Energy Sys. 83 (2016) 104-116.

DOI: 10.1016/j.ijepes.2016.03.039

Google Scholar

[40] B. Shaw, V. Mukherjee and S. P. Ghoshal, Solution of reactive power dispatch of power systems by an opposition-based gravitational search algorithm. Int. J. of Elec. Power & Energy Sys. 55 (2014) 29-40.

DOI: 10.1016/j.ijepes.2013.08.010

Google Scholar

[41] A. M. Sharaf, H. Mavalizadeh, A. Ahmadi, F. H. Gandoman, O. Homaee and H. A. Shayanfar, Application of New Fast, Efficient-Self adjusting PSO-Search Algorithms in Power Systems, Studies. In Classical and recent aspects of power system optimization, Academic Press (2018) 33-61.

DOI: 10.1016/b978-0-12-812441-3.00003-3

Google Scholar