Hardness of Nanocrystalline TiO2 Thin Films

Article Preview

Abstract:

In this work results of hardness investigations of nanocrystalline TiO2 thin films are presented. Thin films were prepared by low pressure hot target reactive sputtering (LPHTRS) and high energy reactive magnetron sputtering (HERMS). In both processes a metallic Ti target was sputtered under low pressure of oxygen working gas. After deposition by LPHTRS TiO2 thin films with anatase structure were obtained and after additional post-process annealing at 1070 K, these films recrystallized into the rutile structure. Annealing also resulted in an increase of average crystallite size from 33 nm (for anatase) to 74 nm (for rutile). The HERMS process is a modification of the LPHTRS process with the addition of an increased amplitude of unipolar voltage pulses, powering the magnetron. This effectively increases the total energy of the depositing particles at the substrate and allows dense, nanocrystalline (8.7 nm crystallites in size) TiO2 thin film with the rutile structure to be formed directly. The hardness of the films was determined by nanoindentation. The results showed that the nanocrystalline TiO2-rutile thin film as-deposited using HERMS had high hardness (14.3 GPa), while the TiO2-anatase films as-deposited by LPHTRS, were 4-times lower (3.5 GPa). For LPHTRS films recrystallized by additional annealing, the change in thin film structure from anatase to rutile resulted in an increase of film hardness from 3.5 GPa to only 7.9 GPa. The HERMS process can therefore produce the TiO2 rutile structure directly, with hardness that is 2 times greater than rutile films produced by LPHTRS with additional annealing step.

You might also be interested in these eBooks

Info:

Periodical:

Journal of Nano Research (Volumes 18-19)

Pages:

195-200

Citation:

Online since:

July 2012

Export:

Price:

[1] V. Chawla, R. Jayaganthan, R. Chandra, Microstructural characteristics and mechanical properties of magnetron sputtered nanocrystalline TiN films on glass substrate, Bull. Mat. Sci. 32 (2009) 117-123.

DOI: 10.1007/s12034-009-0018-8

Google Scholar

[2] Y. Shimomoto, Y. Imamura, A. Sasano, E. Maruyama, Striped optical filters composed of multi-layered TiO2 and SiO2 films deposited by RF sputtering, Surf. Sci. 86 (1979) 417-423.

DOI: 10.1016/0039-6028(79)90421-7

Google Scholar

[3] A. Kiselev, A. Mattson, M. Andersson, A.E.C. Palmqvist, L.O. Sterlund, Adsorption and photocatalytic degradation of diisopropyl fluorophosphates and dimethyl methylphosphonate over dry and wet rutile TiO2, J. Photochem. Photobiol. A 184 (2006).

DOI: 10.1016/j.jphotochem.2006.04.005

Google Scholar

[4] L. Sirghi, Y. Hatanaka, Hydrophilicity of amorphous TiO2 ultra-thin films, Surf. Sci. 530 (2003) L323-L327.

DOI: 10.1016/s0039-6028(03)00397-2

Google Scholar

[5] R.D. Sun, A. Nakajima, A. Fujishima, T. Watanabe, K. Hashimoto, Photoinduced surface wettability conversion of ZnO and TiO2 thin films, J. Phys. Chem. B 105 (2001) 1984-(1990).

DOI: 10.1021/jp002525j

Google Scholar

[6] H. Ohsaki, N. Kanai, Y. Fukunaga, M. Suzuki, T. Watanabe, K. Hashimoto, Photocatalytic properties of SnO2/TiO2 multilayers, TSF 502 (2006) 138-142.

DOI: 10.1016/j.tsf.2005.07.258

Google Scholar

[7] B. Mitu, S. Vizireanu, R. Birjega, M. Dinescu, S. Somacescu, P. Osiceanu, V. Parvulescu, G. Dinescu, Comparative properties of ternary oxides of ZrO2-TiO2-Y2O3 obtained by laser ablation, magnetron sputtering and sol–gel techniques, TSF 515 (2007).

DOI: 10.1016/j.tsf.2006.11.118

Google Scholar

[8] S. Lange, H. Bartzsch, P. Frach, K. Goedicke, Pulse magnetron sputtering in a reactive gas mixture of variable composition to manufacture multilayer and gradient optical coatings, TSF 502 (2006) 29-33.

DOI: 10.1016/j.tsf.2005.07.229

Google Scholar

[9] K. Okimura, Low temperature growth of rutile TiO2 films in modified rf magnetron sputtering, Surf. Coat. Tech. 135 (2001) 286-290.

DOI: 10.1016/s0257-8972(00)00999-3

Google Scholar

[10] D. Kaczmarek, E. Prociow, J. Domaradzki, A. Borkowska, W. Mielcarek, D. Wojcieszak, Influence of substrate type and its placement on structural properties of TiO2 thin films prepared by the high energy reactive magnetron sputtering method, Mat. Sci. Pol. 26 (2008).

DOI: 10.1016/j.apsusc.2008.01.017

Google Scholar

[11] J. Domaradzki, D. Wojcieszak, E. Prociow, D. Kaczmarek, Characterization of transparent and nanocrystalline TiO2: Nd thin films prepared by magnetron sputtering, A. Phys. Pol. A 116 (2009) S-75-S-77.

DOI: 10.12693/aphyspola.116.s-75

Google Scholar

[12] A. Borkowska, J. Domaradzki, D. Kaczmarek, Influence of Eu dopant on optical properties of TiO2 thin films fabricated by low pressure hot target reactive sputtering, Opt. Appl. 37 (2007) 117-122.

DOI: 10.1016/j.tsf.2006.11.082

Google Scholar

[13] E.L. Prociow, J. Domaradzki, D. Kaczmarek, T. Berlicki, Polish patent No P382163 (2007).

Google Scholar

[14] E.L. Prociow, J. Domaradzki, D. Kaczmarek, T. Berlicki, Polish patent No P379365 (2006).

Google Scholar

[15] U. Beck, D.T. Smith, G. Reiners, S.J. Dapkunas, Mechanical properties of SiO2 and Si3N4 coatings: a BAM/NIST co-operative project, TSF 332 (1998) 164-171.

DOI: 10.1016/s0040-6090(98)00989-4

Google Scholar

[16] G. Bolelli, V. Cannillo, R. Gadow, A. Killinger, L. Lusvarghi, J. Rauch, Properties of High Velocity Suspension Flame Sprayed (HVSFS) TiO2 coatings, Surf. Coat. Tech. 203 (2009) 1722-1732.

DOI: 10.1016/j.surfcoat.2009.01.006

Google Scholar

[17] J. Domaradzki, D. Kaczmarek, E. Prociow, A. Borkowska, D. Schmeisser, G. Beuckert, Microstructure and optical properties of TiO2 thin films prepared by low pressure hot target reactive magnetron sputtering, TSF 513 (1-2) (2006) 269.

DOI: 10.1016/j.tsf.2006.01.049

Google Scholar

[18] R. Wasielewski, J. Domaradzki, D. Wojcieszak, D. Kaczmarek, A. Borkowska, E.L. Prociow, A. Ciszewski, Surface characterization of TiO2 thin films obtained by high-energy reactive magnetron sputtering, Appl. Surf. Sci. 254 (2008) 4396.

DOI: 10.1016/j.apsusc.2008.01.017

Google Scholar

[19] J. Musil, Low-pressure magnetron sputtering, Vacuum 50 (3-4) (1998) 363.

Google Scholar

[20] A. Billard, D. Mercs, F. Perry, C. Frantz, Influence of the target temperature on a reactive sputtering process, Surf. Coat. Technol. 116-119 (1999) 721.

DOI: 10.1016/s0257-8972(99)00261-3

Google Scholar

[21] W.M. Posadowski, A. Wiatrowski, J. Dora, Z.J. Radzimski, Magnetron sputtering process control by medium-frequency power supply parameter, TSF 516 (2008) 4478.

DOI: 10.1016/j.tsf.2007.05.077

Google Scholar

[22] D. Kaczmarek, J. Domaradzki, D. Wojcieszak, B. Gornicka, XRD and AFM studies of nanocrystalline TiO2 thin films prepared by modified magnetron sputtering, Proceedings of Reliability and life-time prediction 31st International Spring Seminar on Electronics Technology, ISSE 2008, Budapest, Hungary, 7-11 May 2008, (2008).

DOI: 10.1109/isse.2008.5276518

Google Scholar

[23] I. Horcas, R. Fernandez, J. M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, A. M. Baro, WSXM: A software for scanning probe microscopy and a tool for nanotechnology, Rev. Sci. Instrum. 78 (2007) 013705.

DOI: 10.1063/1.2432410

Google Scholar

[24] Powder Diffraction File, Joint Committee on Powder Diffraction Standards, ASTM, Philadelphia, PA (1967) Card 21-1276.

Google Scholar

[25] Powder Diffraction File, Joint Committee on Powder Diffraction Standards, ASTM, Philadelphia, PA (1967) Card 21-1272.

Google Scholar