Effect of Synthesis Conditions on Pseudocapacitance Properties of Nitrogen-Doped Porous Carbon Materials

Article Preview

Abstract:

The electrochemical properties of the nitrogen-enriched carbons obtained by plant raw treatment as electrode material for supercapacitors were investigated by electrochemical impedance spectroscopy, cycling voltammetry and galvanostatic charge-discharge cycling in KOH aqueous electrolyte. The effect of activation agent (NaOH) concentration and carbonization temperature were analyzed. The separation of double layer and redox capacitance components was done. The dominating role of microporosity for capacitive properties was demonstrated. The capacitance of model capacitors based on carbons obtained at different modes was calculated from both from cycling voltammetry and galvanostatic charge-discharge data. The maximal values of specific capacitance of carbon materials carbonized at 600°C and 900°C are about 100 and 120 F/g, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

112-125

Citation:

Online since:

August 2019

Export:

Price:

* - Corresponding Author

[1] L.L. Zhang, X.S. Zhao, Chem. Carbon-based materials as supercapacitor electrodes, Soc. Rev. 38(9) (2009) 2520-2531.

Google Scholar

[2] S. Arunachalam, B. Kirubasankar, E. Rajagounder Nagarajan, D. Vellasamy, S. Angaiah, A Facile Chemical Precipitation Method for the Synthesis of Nd(OH)3 and La(OH)3 Nanopowders and their Supercapacitor Performances, ChemistrySelect 3(45) (2018) 12719-12724.

DOI: 10.1002/slct.201803151

Google Scholar

[3] K. Singh, B. Kirubasankar, S. Angaiah, Synthesis and electrochemical performance of P2-Na0.67 AlxCo1-xO2 (0.0≤×≤ 0.5) nanopowders for sodium-ion capacitors, Ionics 23(3) (2017) 731-739.

DOI: 10.1007/s11581-016-1821-z

Google Scholar

[4] B. Kirubasankar, P. Palanisamy, S. Arunachalam, V. Murugadoss, S. Angaiah, 2D MoSe2-Ni(OH)2 nanohybrid as an efficient electrode material with high rate capability for asymmetric supercapacitor applications, Chem. Eng. J.355 (2019) 881-890.

DOI: 10.1016/j.cej.2018.08.185

Google Scholar

[5] S. Vijayan, B. Kirubasankar, P. Pazhamalai, A. K. Solarajan, S. Angaiah, Electrospun Nd3+‐Doped LiMn2O4 Nanofibers as High‐Performance Cathode Material for Li‐Ion Capacitors, ChemElectroChem 4(8) (2017). 2059-2067.

DOI: 10.1002/celc.201700161

Google Scholar

[6] K. Balakrishnan, M. Kumar, S. Angaiah, Adv. Mater. Res. 938 (2014) 51-157.

Google Scholar

[7] S. Arunachalam, B. Kirubasankar, V. Murugadoss, D. Vellasamy, S. Angaiah, Facile synthesis of electrostatically anchored Nd(OH)3 nanorods onto graphene nanosheets as a high capacitance electrode material for supercapacitors, New J. Chem. 42(4) (2018) 2923-2932.

DOI: 10.1039/c7nj04335j

Google Scholar

[8] B. Kirubasankar, V. Murugadoss, J. Lin, T. Ding, M. Dong, H. Liu, S. Angaiah, In situ grown nickel selenide on graphene nanohybrid electrodes for high energy density asymmetric supercapacitors, Nanoscale 10(43) (2018) 20414-20425.

DOI: 10.1039/c8nr06345a

Google Scholar

[9] B. Kirubasankar, S. Vijayan, S. Angaiah, Sonochemical synthesis of a 2D–2D MoSe2/graphene nanohybrid electrode material for asymmetric supercapacitors, Sustainable Energy Fuels 3(2) (2019) 467-477.

DOI: 10.1039/c8se00446c

Google Scholar

[10] B. Kirubasankar, V. Murugadoss, S. Angaiah, Hydrothermal assisted in situ growth of CoSe onto graphene nanosheets as a nanohybrid positive electrode for asymmetric supercapacitors, RSC Adv. 7(10) (2017) 5853-5862.

DOI: 10.1039/c6ra25078e

Google Scholar

[11] A. Subasri, K. Balakrishnan, E. R. Nagarajan, V. Devadoss, A. Subramania, Development of 2D La(OH)3/graphene nanohybrid by a facile solvothermal reduction process for high-performance supercapacitors, Electrochim. Acta 281 (2018) 329-337.

DOI: 10.1016/j.electacta.2018.05.142

Google Scholar

[12] P.Yan, B. Zhang, KH Wu, D. Su, W. Qi, Surface chemistry of nanocarbon: Characterization strategies from the viewpoint of catalysis and energy conversion, Carbon 143 (2018) 915 - 936.

DOI: 10.1016/j.carbon.2018.11.085

Google Scholar

[13] X. Huang, X. Yin, X. Yu, J. Tian, W. Wu, Preparation of nitrogen-doped carbon materials based on polyaniline fiber and their oxygen reduction properties, Colloids Surf., A 539 (2018) 163-170.

DOI: 10.1016/j.colsurfa.2017.12.024

Google Scholar

[14] B.K. Ostafiychuk, I.M. Budzulyak, M.M. Kuzyshyn, B.I. Rachiy, R.A. Zatorskiy, R.P. Lisovskiy, V.I. Mandzyuk, Nitrogen-containing nanoporous coal for electrodes of supercapacitors, J. Nano- Electron. Phys. 5 (2013) 03049-6.

Google Scholar

[15] M.Y. Ghotbi, M. Azadfalah, Design of a layered nanoreactor to produce nitrogen doped carbon nanosheets as highly efficient material for supercapacitors, Mater. Des. 89 (2016) 708-714.

DOI: 10.1016/j.matdes.2015.10.015

Google Scholar

[16] Z.R. Ismagilov, A.E. Shalagina, O.Y. Podyacheva, A.V. Ischenko, L.S. Kibis, A.I. Boronin, Y.A. Chesalov, D.I. Kochubey, A. I. Romanenko, O.B. Anikeeva, T.I. Buryakov, E. N. Tkachev, Structure and electrical conductivity of nitrogen-doped carbon nanofibers, Carbon 47 (2009) 1922-1929.

DOI: 10.1016/j.carbon.2009.02.034

Google Scholar

[17] M. Demir, S.K. Saraswat, R.B. Gupta, Hierarchical nitrogen-doped porous carbon derived from lecithin for high-performance supercapacitors, RSC Advances 7 (2017) 42430-42442.

DOI: 10.1039/c7ra07984b

Google Scholar

[18] Y. Wang, Y. Song, Y. Xia, Electrochemical capacitors: mechanism, materials, systems, characterization and applications, Chem. Soc. Rev. 45 (2016) 5925-5950.

DOI: 10.1039/c5cs00580a

Google Scholar

[19] A.I. Kachmar, V.M. Boichuk, I.M. Budzulyak, V.O. Kotsyubynsky, B.I. Rachiy, R.P. Lisovskiy, Effect of synthesis conditions on the morphological and electrochemical properties of nitrogen-doped porous carbon materials, Fullerenes, Nanotubes, Carbon Nanostruct (2019).

DOI: 10.1080/1536383x.2019.1618840

Google Scholar

[20] D. Corbett, N. Kohan, G. Machado, C. Jing, A. Nagardeolekar, B. Bujanovic, Chemical composition of apricot pit shells and effect of hot-water extraction, Energies 8(9) (2015).9640-9654.

DOI: 10.3390/en8099640

Google Scholar

[21] H. Li, Y. Qu, J. Xu, Microwave-assisted conversion of lignin, in: Zh. Fang, R. L. Smith Jr., X. Qi (Eds.), Production of biofuels and chemicals with microwave, Springer, Dordrecht, 2015, pp.61-82.

DOI: 10.1007/978-94-017-9612-5_4

Google Scholar

[22] S.J. Gregg, K.S.W. Sing, Аdsorption, surface area and porosity. London: Academic Press, 1982, 313 p.

Google Scholar

[23] D. Johnson, Software Zview-v 2.3d, Scribner Associates Inc. (2000).

Google Scholar

[24] L. Zou, B. Huang, Y. Huang, Q. Huang, C. A. Wang, An investigation of heterogeneity of the degree of graphitization in carbon–carbon composites, Mater. Chem. Phys. 82(3), (2003) 654-662.

DOI: 10.1016/s0254-0584(03)00332-8

Google Scholar

[25] L. Bokobza, J. L. Bruneel, M. Couzi, Raman spectra of carbon-based materials (from graphite to carbon black) and of some silicone composites, C 1(1) (2015) 77-94.

DOI: 10.3390/c1010077

Google Scholar

[26] A.C. Ferrari, D.M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene, Nat. Nanotechnol. 8 (2013) 235–246.

DOI: 10.1038/nnano.2013.46

Google Scholar

[27] M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. G. Cancado, A. Jorio, R. Saito, Studying disorder in graphite-based systems by Raman spectroscopy, Phys. Chem. Chem. Phys. 9(11) (2007) 1276-1290.

DOI: 10.1039/b613962k

Google Scholar

[28] D.S. Yuan, J. Zeng, J. Chen, Y. Liu, Highly ordered mesoporous carbon synthesized via in situ template for supercapacitors, Int. J. Electrochem. Sci. 4(2009) 562-570.

Google Scholar

[29] W. Sugimoto, H. Iwata, K. Yokoshima, Y. Murakami, Y. Takasu, Proton and electron conductivity in hydrous ruthenium oxides evaluated by electrochemical impedance spectroscopy: the origin of large capacitance, J. Phys. Chem. B 109 (2005) 7330-7338.

DOI: 10.1021/jp044252o

Google Scholar

[30] B.B. García, F.M. Feaver, Q. Zhang, R.D. Champion, G. Cao, T.T. Fister, K.P. Nagle, G.T. Seidler, Effect of pore morphology on the electrochemical properties of electric double layer carbon cryogel supercapacitors, J. Appl. Phys. 104 (2008) 014305.

DOI: 10.1063/1.2949263

Google Scholar

[31] G. Lota, E. Frackowiak, Pseudocapacitance effects for enhancement of capacitor performance, Fuel Cells 10(2010) 848-855.

DOI: 10.1002/fuce.201000032

Google Scholar

[32] W. Chen, Z. Fan, L. Gu, X. Bao, C. Wang, Enhanced capacitance of manganese oxide via confinement inside carbon nanotubes, Chem. Commun. 46 (2010) 3905-3907.

DOI: 10.1039/c000517g

Google Scholar

[33] T. Nguyen, M. Boudard, M. Carmezim, M. Montemor, Layered Ni(OH)2-Co(OH)2 films prepared by electrodeposition as charge storage electrodes for hybrid supercapacitors, Sci. Rep. 7 (2017) 39980.

DOI: 10.1038/srep39980

Google Scholar