MHD Hybrid Cu-Al2O3/ Water Nanofluid Flow with Thermal Radiation and Partial Slip Past a Permeable Stretching Surface: Analytical Solution

Article Preview

Abstract:

The influence of velocity slip and thermal radiation effects on the magnetohydrodynamic hybrid Cu-Al2O3/water nanofluid flow over a permeable stretching sheet is reported in this paper. The similarity transformation is adopted to reduce the partial differential equations to the ordinary differential equations. Exact analytical method is implemented to solve the problem. Maple program is used to facilitate the calculation process. The new additional effects which are the velocity slip and thermal radiation effects are considered towards the model to scrutinize the impacts. The effects of various parameters towards the velocity and temperature profiles are demonstrated through graphs, meanwhile the skin friction coefficient and the local Nusselt number are exhibited through the tabulation of data. The existence of velocity slip reduced the velocity profile but enhanced the temperature profile. The thermal radiation effect has increased the temperature profile. The heat transfer rate are enhanced for the case of hybrid nanofluid compared to the mono nanofluid.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

75-91

Citation:

Online since:

November 2020

Export:

Price:

* - Corresponding Author

[1] M. Sheikholeslami, D. D. Ganji, Chapter 3–Nanofluid Flow and Heat Transfer in an Enclosure, Hydrothermal Analysis in Engineering Using Control Volume Finite Element Method, 2014, pp.31-76.

DOI: 10.1016/b978-0-12-802950-3.00003-5

Google Scholar

[2] J. Sarkar, P. Ghosh, A. Adil, A review on hybrid nanofluids: recent research, development and applications. Renewable and Sustainable Energy Reviews, 43 (2015) 164-177.

DOI: 10.1016/j.rser.2014.11.023

Google Scholar

[3] K. V. Wong, O. De Leon, Applications of nanofluids: current and future, Advances in Mechanical Engineering, 2010 (2010) 1-11.

Google Scholar

[4] S. U. S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, ASME Fluids Engineering Division. 213 (1995) 99-105.

Google Scholar

[5] M. Hassani, M. M. Tabar, H. Nemati, G. Domairry, F. Noori, An analytical solution for boundary layer flow of a nanofluid past a stretching sheet, International Journal of Thermal Sciences. 50 (2011) 2256-2263.

DOI: 10.1016/j.ijthermalsci.2011.05.015

Google Scholar

[6] M. A. A. Hamad, Analytical solution of natural convection flow of a nanofluid over a linearly stretching sheet in the presence of magnetic field, International communications in heat and mass transfer. 38 (2011) 487-492.

DOI: 10.1016/j.icheatmasstransfer.2010.12.042

Google Scholar

[7] M. Turkyilmazoglu, Exact analytical solutions for heat and mass transfer of MHD slip flow in nanofluids, Chemical Engineering Science. 84 (2012) 182-187.

DOI: 10.1016/j.ces.2012.08.029

Google Scholar

[8] E. M. A. Elbashbeshy, T. G. Emam, M. S. Abdel-Wahed, An exact solution of boundary layer flow over a moving surface embedded into a nanofluid in the presence of magnetic field and suction/injection. Heat and Mass Transfer. 50 (2014) 57-64.

DOI: 10.1007/s00231-013-1224-x

Google Scholar

[9] M. M. Rashidi, N. V. Ganesh, A. A. Hakeem, B. Ganga, Buoyancy effect on MHD flow of nanofluid over a stretching sheet in the presence of thermal radiation, Journal of Molecular Liquids. 198 (2014) 234-238.

DOI: 10.1016/j.molliq.2014.06.037

Google Scholar

[10] A. K. Pandey, M. Kumar, Effect of viscous dissipation and suction/injection on MHD nanofluid flow over a wedge with porous medium and slip, Alexandria Engineering Journal. 55 (2016) 3115-3123.

DOI: 10.1016/j.aej.2016.08.018

Google Scholar

[11] R. Wang, J. Du, Z. Zhu, Effects of wall slip and nanoparticles' thermophoresis on the convective heat transfer enhancement of nanofluid in a microchannel, Journal of Thermal Science and Technology. 11 (2016) JTST00017-JTST00017.

DOI: 10.1299/jtst.2016jtst00017

Google Scholar

[12] T. Hayat, M. Imtiaz, A. Alsaedi, Magnetohydrodynamics flow of nanofluid with homogeneous-heterogeneous reactions and velocity slip, Thermal Science. 21 (2017) 901-913.

DOI: 10.2298/tsci140922067h

Google Scholar

[13] Y. S. Daniel, Z. A. Aziz, Z. Ismail, F. Salah, Effects of slip and convective conditions on MHD flow of nanofluid over a porous nonlinear stretching/shrinking sheet, Australian Journal of Mechanical Engineering. 16 (2018) 213-229.

DOI: 10.1080/14484846.2017.1358844

Google Scholar

[14] N. F. Dzulkifli, N. Bachok, I. Pop, N. A. Yacob, N. M. Arifin, H. Rosali, Unsteady stagnation-point flow and heat transfer over an exponential stretching sheet in Copper-water nanofluid with slip velocity effect, Journal of Physics: Conference Series. 1132 (2018) 012029. IOP Publishing.

DOI: 10.1088/1742-6596/1132/1/012029

Google Scholar

[15] S. Suresh, K. P. Venkitaraj, P. Selvakumar, M. Chandrasekar, Synthesis of Al2O3–Cu/water hybrid nanofluids using two step method and its thermo physical properties. Colloid. Surf. A-Physicochem. Eng. Asp. 388 (2011), 41-48.

DOI: 10.1016/j.colsurfa.2011.08.005

Google Scholar

[16] S. A. Devi, S. S. U. Devi, Numerical investigation of hydromagnetic hybrid Cu–Al2O3/water nanofluid flow over a permeable stretching sheet with suction, International Journal of Nonlinear Sciences and Numerical Simulation. 17 (2016) 249-257.

DOI: 10.1515/ijnsns-2016-0037

Google Scholar

[17] S. S. U. Devi, S. A. Devi, Numerical investigation of three-dimensional hybrid Cu–Al2O3/water nanofluid flow over a stretching sheet with effecting Lorentz force subject to Newtonian heating, Canadian Journal of Physics. 94 (2016) 490-496.

DOI: 10.1139/cjp-2015-0799

Google Scholar

[18] Z. Iqbal, E. Azhar, E. N. Maraj, Utilization of the computational technique to improve the thermophysical performance in the transportation of an electrically conducting Al2O3-Ag/H2O hybrid nanofluid, The European Physical Journal Plus. 132 (2017) 544.

DOI: 10.1140/epjp/i2017-11806-0

Google Scholar

[19] A. T. Olatundun, O. D. Makinde, Analysis of Blasius flow of hybrid nanofluids over a convectively heated surface, In Defect and Diffusion Forum. 377 (2017) 29-41. Trans Tech Publications Ltd.

DOI: 10.4028/www.scientific.net/ddf.377.29

Google Scholar

[20] S. Das, R. N. Jana, O. D. Makinde, MHD flow of Cu-Al2O3/Water hybrid nanofluid in porous channel: Analysis of entropy generation, In Defect and Diffusion Forum. 377 (2017) 42-61. Trans Tech Publications Ltd.

DOI: 10.4028/www.scientific.net/ddf.377.42

Google Scholar

[21] M. Usman, M. Hamid, T. Zubair, R. U. Haq, W. Wang, Cu-Al2O3/Water hybrid nanofluid through a permeable surface in the presence of nonlinear radiation and variable thermal conductivity via LSM, International Journal of Heat and Mass Transfer. 126 (2018) 1347-1356.

DOI: 10.1016/j.ijheatmasstransfer.2018.06.005

Google Scholar

[22] T. Hayat, S. Nadeem, A. U. Khan, Rotating flow of Ag-CuO/H2O hybrid nanofluid with radiation and partial slip boundary effects, The European Physical Journal E. 41 (2018) 75.

DOI: 10.1140/epje/i2018-11682-y

Google Scholar

[23] B. Prabhavathi, P. Sudarsanareddy, R. Bhuvanavijaya, Three-Dimensional Heat and Mass Transfer Flow Over a Stretching Sheet Filled with Al2O3-Water Based Nanofluid with Heat Generation/Absorption, Journal of Nanofluids. 8 (2019) 1355-1361.

DOI: 10.1166/jon.2019.1686

Google Scholar

[24] I. Waini, A. Ishak, I. Pop, Hybrid nanofluid flow and heat transfer over a nonlinear permeable stretching/shrinking surface, International Journal of Numerical Methods for Heat & Fluid Flow. 29 (2019) 3110–312.

DOI: 10.1108/hff-01-2019-0057

Google Scholar

[25] I. Waini, A. Ishak, I. Pop, Unsteady flow and heat transfer past a stretching/shrinking sheet in a hybrid nanofluid, International Journal of Heat and Mass Transfer. 136 (2019) 288-297.

DOI: 10.1016/j.ijheatmasstransfer.2019.02.101

Google Scholar

[26] N. S. Khashi'ie, N. M. Arifin, R. Nazar, M. E. H. Hafidzuddin, N. Wahi, I. Pop, Magnetohydrodynamics (MHD) Axisymmetric Flow and Heat Transfer of a Hybrid Nanofluid past a Radially Permeable Stretching/Shrinking Sheet with Joule Heating, Chinese Journal of Physics. 64 (2020) 251-263.

DOI: 10.1016/j.cjph.2019.11.008

Google Scholar

[27] L. J. Crane, Flow past a stretching plate, Zeitschrift für angewandte Mathematik und Physik ZAMP. 21 (1970) 645-647.

DOI: 10.1007/bf01587695

Google Scholar

[28] A. Ebaid, H. S. Alhawiti, New application for the generalized incomplete gamma function in the heat transfer of nanofluids via two transformations, Journal of Computational Engineering 2015 (2015) 1-6.

DOI: 10.1155/2015/293105

Google Scholar

[29] E. H. Aly, A. Ebaid, Exact analysis for the effect of heat transfer on MHD and radiation Marangoni boundary layer nanofluid flow past a surface embedded in a porous medium, Journal of Molecular liquids. 215 (2016) 625-639.

DOI: 10.1016/j.molliq.2015.12.108

Google Scholar