Graphene Nanoribbon Based Gas Sensor

Article Preview

Abstract:

Mono layer graphene (MLG) as a new kind of advanced material is in our focus. MLG indicates a twodimensional structure with quantum confinement effect in its thickness. The MLG based nanomaterial has remarkable potential on electrochemical catalysis and bio-sensing applications. Recently inter sheet sensing systems for graphene sensor have been reported which will be used in our model as well. We provide a new idea of electrochemical sensors based on the graphene application. In this paper carrier the concentration on the sensor as a function of gas concentration is reported. A field effect transistor (FET) base structure as a modeling platform is proposed. Gate voltage representing the gas concentration on the sensor, or in other words the gate voltage as a function of gas concentration can be employed. Finally the proposed model is used in simulation studies and evaluated by experimental result.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

7-11

Citation:

Online since:

June 2013

Export:

Price:

[1] Cui, Yuling, Zhang, Bing, Liu, Bingqian, Chen, Huafeng, Chen, Guonan, Tang, Dianping: Microchimica Acta, 2011. 174(1-2): pp.137-144.

Google Scholar

[2] NM Huang, SS Lim, I Harrison and CH Chia: Langmuir, 2010. 26(15): pp.12902-12908.

Google Scholar

[3] Cao, Linyuan. Sun, Hongmei, Li, Jing, Lu, Lehui: Analytical Methods, 2011. 3(7): p.1587.

Google Scholar

[4] F.B. Rao, H.A., L.X. Dong, and W. Li: HIGHLY SENSITIVE BILAYER STRUCTURED GRAPHENE SENSOR. Electrical & Computer Engineering, Michigan State University, East Lansing, MI 48824, USA, 2011: pp.2738-2741.

DOI: 10.21926/obm.neurobiol.2002059

Google Scholar

[5] Emery, Jonathan D. Wang, Qing Hua, Zarrouati, Marie, Fenter, Paul, Hersam, Mark C., Bedzyk, Michael J: Surface Science, 2011. 605(17-18): pp.1685-1693.

DOI: 10.1016/j.susc.2010.11.008

Google Scholar

[6] Al-Aqtash, N and I. Vasiliev: Journal of Physical Chemistry C, 2011. 115(38): pp.18500-18510.

Google Scholar

[7] Ashraf, M. K. Bruque, N. A. Pandey, R. R. Collins, P. G.Lake, R. K: Physical Review B, 2009. 79(11).

Google Scholar

[8] Botello-Mendez, A. R. Cruz-Silva, E. Lopez-Urias, F. Sumpter, B. G. Meunier, V. Terrones, M. Terrones, H: Acs Nano, 2009. 3(11): pp.3606-3612.

DOI: 10.1021/nn900614x

Google Scholar

[9] Gil, A. J. Adhikari, S. Scarpa, F. Bonet, J: Journal of Physics-Condensed Matter, 2010. 22(14).

Google Scholar

[10] Jeong, Hu Young, Lee, Dae-Sik, Choi, Hong Kyw, Lee, Duck Hyun, Kim, Ji-Eun, Lee, Jeong Yong, Lee, Won Jong, Kim, Sang Ouk, Choi, Sung-Yool: Applied Physics Letters, 2010. 96(21).

DOI: 10.1109/icmts.2006.1614307

Google Scholar

[11] Zhang, Hang, Kulkarni, Atul, Kim, Hyeongkeun, Woo, Daekwang, Kim, Young-Jin, Hong, Byung Hee, Choi, Jae-Boong, Kim, Taesung: Journal of Nanoscience and Nanotechnology, 2011. 11(7): pp.5939-5943.

DOI: 10.1109/icsens.2010.5690240

Google Scholar

[12] Wang, B., Y.-h. Chang, and L.-j. Zhi: New Carbon Materials, 2011. 26(1): pp.31-35.

Google Scholar

[13] Liu, K. Burghard, M. Roth, S. Bernier, P: Applied Physics Letters, 1999. 75(16): pp.2494-2496.

Google Scholar

[14] Passlack, M: III-V METAL-OXIDE-SEMICONDUCTOR TECHNOLOGY. 2008 Ieee 20th International Conference on Indium Phosphide and Related Materials (Iprm), 2008: pp.59-59.

DOI: 10.1109/iciprm.2008.4703075

Google Scholar

[15] Chuck Hawkins, and Jaume Segura: Introduction to Digital Electronics Chapter 3 MOSFET TRANSISTORS.

Google Scholar