Spark Plasma Sintering and Characterization of WC-Co-cBN Composites

Article Preview

Abstract:

WC-Co-cBN composites were consolidated by SPS at 1373 to 1673 K under a moderate pressure of 100 MPa. The addition of cBN increased the starting and finishing temperature of shrinkage and decreased the relative density of WC-Co. The relative density of WC-(10-20 vol%) cBN composites was about 97-100% at 1573 K and decreased with increasing the sintering temperature to 1673 K due to the phase transformation of cBN to hBN. The highest hardness and fracture toughness of WC-Co-20 vol% cBN composite sintered at 1573 K were 23.2 GPa and 8.0 MP m1/2, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

194-198

Citation:

Online since:

June 2014

Export:

Price:

* - Corresponding Author

[1] R. Wentorf, R. DeVries, F. Bundy, Sintered superhard materials. Science 208 (1980) 873-880.

DOI: 10.1126/science.208.4446.873

Google Scholar

[2] X.-Z. Rong, T. Tsurumi, O. Fukunaga, T. Yano, High-pressure sintering of cBN-TiN-Al composite for cutting tool application. Diamond and Related Materials 11 (2002) 280-286.

DOI: 10.1016/s0925-9635(01)00692-6

Google Scholar

[3] J. Zhang, L. Wang, L. Shi, W. Jiang, L. Chen, Rapid fabrication of Ti3SiC2-SiC nanocomposite using the spark plasma sintering-reactive synthesis (SPS-RS) method. Scr. Mater. 56 (2007) 241-244.

DOI: 10.1016/j.scriptamat.2006.09.029

Google Scholar

[4] M. Nygren, Z. Shen, On the preparation of bio-, nano- and structural ceramics and composites by spark plasma sintering. Solid State Sci. 5 (2003) 125-131.

DOI: 10.1016/s1293-2558(02)00086-9

Google Scholar

[5] Z. Shen, M. Johnsson, Z. Zhao, M. Nygren, Spark plasma aintering of alumina. J. Am. Ceram. Soc. 85 (2002) 1921-1927.

DOI: 10.1111/j.1151-2916.2002.tb00381.x

Google Scholar

[6] M. Hotta, T. Goto, Densification and microstructure of Al2O3-cBN composites prepared by spark plasma sintering. J. Ceram. Soc. Japan 116 (2008) 744-748.

DOI: 10.2109/jcersj2.116.744

Google Scholar

[7] M. Hotta, T. Goto, Effects of cubic BN addition and phase transformation on hardness of Al2O3-cubic BN composites. Ceram. Int. 37 (2011) 1453-1457.

DOI: 10.1016/j.ceramint.2010.09.058

Google Scholar

[8] M. Hotta, T. Goto, Spark plasma sintering of TiN-cubic BN composites. J. Ceram. Soc. Japan 118 (2010) 137-140.

DOI: 10.2109/jcersj2.118.137

Google Scholar

[9] M. Hotta, T. Goto, Densification, phase transformation and hardness of mullite-cubic BN composites prepared by spark plasma sintering. J. Ceram. Soc. Japan 118 (2010) 157-160.

DOI: 10.2109/jcersj2.118.157

Google Scholar

[10] M. Hotta, T. Goto, Densification and phase transformation of β-SiAlON–cubic boron nitride composites prepared by spark plasma sintering. J. Am. Ceram. Soc. 92 (2009) 1684-1690.

DOI: 10.1111/j.1551-2916.2009.03098.x

Google Scholar

[11] J. Zhang, R. Tu, T. Goto, Densification, microstructure and mechanical properties of SiO2-cBN composites by spark plasma sintering. Ceram. Int. 38 (2012) 351-356.

DOI: 10.1016/j.ceramint.2011.07.013

Google Scholar

[12] cBN. JCPDS, International Centre for Diffraction Data, No. 25-1033.

Google Scholar

[13] B.R. Lawn, E.R. Fuller, Equilibrium penny-like cracks in indentation fracture. J. Mater. Sci. 10 (1975) 2016-2024.

DOI: 10.1007/bf00557479

Google Scholar