Laser Cutting of Coronary Stents: Progress and Development in Laser Based Stent Cutting Technology

Article Preview

Abstract:

Laser cutting is one of the key fabrication technologies applied to coronary stent manufacture. This paper reviews the recent progress in laser-based stent manufacturing, including different type of lasers used, laser interaction with different stent materials, process characteristics and quality/productivity issues.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

345-350

Citation:

Online since:

August 2015

Export:

Price:

* - Corresponding Author

[1] van Beusekom H.M., S., P.W., Drug-Eluting Stent Endothelium: Presence or Dysfunction. Journal American College Cardiology Interventions, 2010. 3(1): pp.76-77.

Google Scholar

[2] Nursing and Health Studies (NHS). Coronary heart disease. 2011 [cited 2012 04/01]; Available from: http: /www. nhsinform. co. uk/health-library/articles/c/coronary-heart-disease/introduction.

Google Scholar

[3] Whittaker, D.R. and M.F. Fillinger, The Engineering of Endovascular Stent Technology: A Review. Vascular and Endovascular Surgery, 2006. 40(2): pp.85-94.

DOI: 10.1177/153857440604000201

Google Scholar

[4] National Heart Lung and Blood Institute. What is a Heart Attack. 2011 [cited 2012 04/01]; Available from: http: /www. nhlbi. nih. gov/health/dci/Diseases/stents/stents_placed. html.

Google Scholar

[5] Chen, L., Laser Cutting for Medical Device (stent) - Yesterday, Today and Tomorrow. ICALEO 2008, 2008: pp.320-324.

Google Scholar

[6] Kathuria, Y.P., Laser microprocessing of stent for medical therapy. International Symposium on micromechatronics and human science, 1998: pp.111-114.

Google Scholar

[7] Kathuria, Y.P., Industrial aspects of Nd: YAG laser microprocessing. Proceedings of SPIE, 2001. 4157(113-118).

Google Scholar

[8] Kathuria, Y.P., Biocompatible metallic stent for medical theraphy. Proceedings of SPIE, 2003. 5287: pp.52-61.

Google Scholar

[9] Kathuria, Y.P., Laser microprocessing of metallic stent for medical therapy. Journal of Materials Processing Technology, 2005. 170(3): pp.545-550.

DOI: 10.1016/j.jmatprotec.2005.05.041

Google Scholar

[10] Raval, A., Choubey, A., Engineer, C., Kothwala, D., Development and assessment of 316LVM cardiovascular stents. Materials Science and Engineering A, 2004. 386(1-2): pp.331-343.

DOI: 10.1016/s0921-5093(04)00974-8

Google Scholar

[11] Meszlenyi, G., Dobranszky, J., Puskas, Z., Laser cutting of high precision tubes. Materials Science Forum, 2008. 589: pp.427-431.

DOI: 10.4028/www.scientific.net/msf.589.427

Google Scholar

[12] Liu, W., W. Du, and J. Liao, Application of fiber laser in the field of stent cutting and micro-machining. Proceedings of SPIE, 2005. 5629: pp.263-270.

Google Scholar

[13] Sudheer, S.K., Pillai, V.P.M., Nayar, V.U., Pothiawala, Y., Kothawala, D., Kotadia, D., Micromachining of 316LVM stainless steel tubes using periodic acousto-optic modulation of pulsed Nd: YAG lasers for cardiovascular stent applications. Journal of Microlith., Microfab., Microsyst, 2006. 5(2): pp.1-9.

DOI: 10.1117/1.2201038

Google Scholar

[14] Kleine, K.F., Whitney, B., Watkins, K.G., Use of fiber lasers for micro cutting applications in the medical device industry. ICALEO, 2002: pp.1-11.

DOI: 10.2351/1.5065757

Google Scholar

[15] Meng, H., Liao, J., Zhou, Y., Zhang, Q., Laser micro processing of cardiovascular stent with fiber laser cutting system. Optics and Lasers in Engineering, 2009. 41: pp.300-302.

DOI: 10.1016/j.optlastec.2008.06.001

Google Scholar

[16] Muhammad, N., Whitehead, D., Boor, A., Li, L., Comparison of dry and wet fibre laser profile cutting of thin 316L stainless steel tubes for medical device applications. Journal of Materials Processing Technology, 2010. 210(15): pp.2261-2267.

DOI: 10.1016/j.jmatprotec.2010.08.015

Google Scholar

[17] Pronko, P.P., Dutta, S. K., Squier, J., Rudd, J. V., Du, D., Mourou, G., Machining of sub-micron holes using a femtosecond laser at 800 nm. Optics Communications, 1995. 114(1-2): pp.106-110.

DOI: 10.1016/0030-4018(94)00585-i

Google Scholar

[18] Jandeleit, J., Horn, A., Weichenhain, R., Kreutz, E. W., Poprawe, R., Fundamental investigations of micromachining by nano- and picosecond laser radiation. Applied Surface Science, 1998. 127-129: pp.885-891.

DOI: 10.1016/s0169-4332(97)00762-9

Google Scholar

[19] Klug, U. and F. Siegel, Laser Micro Processing using short Laser Pulses. Laser Technik Journal, 2007. 4(1): pp.32-35.

DOI: 10.1002/latj.200790140

Google Scholar

[20] Huang, H., H.Y. Zheng, and G.C. Lim, Femtosecond laser machining characteristics of Nitinol. Applied Surface Science, 2004. 228(1-4): pp.201-206.

DOI: 10.1016/j.apsusc.2004.01.018

Google Scholar

[21] Zheng, H.Y., Zareena, A. R., Huang, H., Lim, G. C., Studies of femtosecond laser processed nitinol. Materials Science Forum, 2003. 437-438: pp.277-280.

DOI: 10.4028/www.scientific.net/msf.437-438.277

Google Scholar

[22] Chung, I.L.Y., J. -D. Kim, and K. -H. Kang, Ablation drilling of invar alloy using ultrashort pulsed laser. International Journal of Precision Engineering and Manufacturing, 2009. 10(2): pp.11-16.

DOI: 10.1007/s12541-009-0021-4

Google Scholar

[23] Wolynski, A., Herrmann, T., Mucha, P., Haloui, H., L'Huillier, J., Laser ablation of CFRP using picosecond laser pulses at different wavelengths from UV to IR. Physics Procedia. 12(Part 2): pp.292-301.

DOI: 10.1016/j.phpro.2011.03.136

Google Scholar

[24] Weingarten, K., High Energy Picosecond Lasers: Ready for Prime Time. Laser Technik Journal, 2009. 6(3): pp.51-54.

DOI: 10.1002/latj.200990041

Google Scholar

[25] Mielke, M., Gaudiosi, D., Kim, K., Greenberg, M., Gu, X., Cline, R., Peng, X., Slovick, M., Allen, N., Manning, M., Ferrel, M., Prachayaamorn, N., Sapers, S., Ultrafast Fiber Laser Platform for Advanced Materials Processing. Journal of Laser Micro/Nanoengineering, 2010. 5: pp.53-58.

DOI: 10.2961/jlmn.2010.01.0012

Google Scholar

[26] Dausinger, F., H. Hugel, and V. Konov, Micro-machining with ultrashort laser pulses: From basic understanding to technical applications. Proceedings of SPIE, 2002. 5147: pp.106-115.

DOI: 10.1117/12.537496

Google Scholar

[27] Preuss, S., A. Demchuk, and M. Stuke, Sub-picosecond UV laser ablation of metals. Applied Physics A: Materials Science & Processing, 1995. 61(1): pp.33-37.

DOI: 10.1007/bf01538207

Google Scholar

[28] Muhammad, N., Whitehead, D., Boor, A., Oppenlander, W., Liu, Z., Li, L., Picosecond laser micromachining of nitinol and platinum iridium alloy for coronary stent applications. Applied Physics A: Materials Science & Processing, 2011: pp.1-11.

DOI: 10.1007/s00339-011-6609-4

Google Scholar

[29] Li, C., S. Nikumb, and F. Wong, An optimal process of femtosecond laser cutting of NiTi shape memory alloy for fabrication of miniature devices. Optics and lasers in engineering, 2006. 44(10): pp.1078-1087.

DOI: 10.1016/j.optlaseng.2005.08.003

Google Scholar

[30] Muhammad, N. and L. Lin, Underwater femtosecond laser micromachining of thin nitinol tubes for medical coronary stent manufacture. Applied Physics A: Materials Science & Processing, (2012).

DOI: 10.1007/s00339-012-6795-8

Google Scholar