In Vitro Bioactivity and Bacteriostasis Effect of Thermally Treated and UV-Light Irradiated TiO2 Ceramics

Article Preview

Abstract:

Biomaterials used in bone repair must satisfy certain criteria in order to perform without undesirable immunological response. They must be biocompatible and should inhibit bacteria adhesion on the surface, that could led to strong inflammatory process and implant failure. Our study reveals a synergistic effect on bioactivity and bacteriostasis effect of the TiO2 ceramics with different surface properties and provides insight into the design of better biomedical implant surfaces. The results show that UV light irradiation has great impact on hidrophilicity of TiO2 ceramics, but little effect on the sample bacteriostatic effect and bioactivity. TiO2 ceramic samples showed no or very low bacterial adhesion. Nevertheless, in vitro bioactivity showed TiO2 ceramic that was thermally treated at lower temperature. Thus for bone repair it’s suggested to use TiO2 ceramic sintered at lower temperature in order to provide bioactivity with bacterostatic effect and use UV-light irradiation to improve hidrophilicity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

121-126

Citation:

Online since:

January 2016

Export:

Price:

[1] D. M. Dohan Ehrenfest, P.G. Coelho, B. S. Kang, Y. T. Sul, T. Albrektsson, Classification of osseointegrated implant surfaces: materials, chemistry and topography, Trends Biotechnol. 28 (2010) 198-206.

DOI: 10.1016/j.tibtech.2009.12.003

Google Scholar

[2] Y. Li, S. Zou, D. Wang, G. Feng, C. Bao, J. Hu, The effect of hydrofluoric acid treatment on titanium implant osseointegration in ovariectomized rats, Biomaterials 31 (2010) 3266-3273.

DOI: 10.1016/j.biomaterials.2010.01.028

Google Scholar

[3] F. Schwarz, M. Sager, I. Kadelka, D. Ferrari, J. Becker, Influence of titanium implant surface characteristics on bone regeneration in dehiscence-type defects: an experimental study in dogs. J. Clin. Periodontol. 37 (2010) 466-473.

DOI: 10.1111/j.1600-051x.2010.01533.x

Google Scholar

[4] C.M. Stanford, Surface modification of biomedical and dental implants and the processes of inflammation, wound healing and bone formation, Int. J. Mol. Sci. 11 (2010) 354-369.

DOI: 10.3390/ijms11010354

Google Scholar

[5] B. Gottenbos, D.W. Grijpma, H.C. Van der Mei, J. Feijen, H.J. Busscher, Antimicrobial effect of positively charged surfaces on adhering Gram-positive and Gram-negative bacteria, J. Antimicrob. Chemother. 48 (2001) 7-13.

DOI: 10.1093/jac/48.1.7

Google Scholar

[6] H.J. Busscher, R. Ros, H.C. Van der Mei, Initial microbial adhesion is a determinant for the strength of a biofilm adhesion, FEMS Microbiol. Lett. 128 (1995) 229-234.

DOI: 10.1111/j.1574-6968.1995.tb07529.x

Google Scholar

[7] B. Del Curto, M.F. Brunella, C. Giordano, M.P. Pedeferri, V. Valtulina, L. Visai, A. Cigada, Decreased bacterial adhesion to surface-treated titanium, Int. J. Artif. Organs 28 (2005) 718-730.

DOI: 10.1177/039139880502800711

Google Scholar

[8] L. Visai, L. De Nardo, C. Punta, L. Melone, A. Cigada, M. Imbriani, C. R. Arciola, Titanium dioxide antibacterial surfaces in biomedical devices. Int. J. Artif. Organs 34 (2011) 929-946.

DOI: 10.5301/ijao.5000050

Google Scholar

[9] K. Anselme, Ostebolast adhesion on biomaterials, Biomaterials 21 (2000) 667-681.

DOI: 10.1016/s0142-9612(99)00242-2

Google Scholar

[10] P. Roach, D. Eglin, K. Rohde, C.C. Perry, Modern biomaterials: a review—bulk properties and implications of surface modifications, J Mater Sci: Mater Med 18 (2007) 1263–1277.

DOI: 10.1007/s10856-006-0064-3

Google Scholar

[11] T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials 27 (2006) 2907-2915.

DOI: 10.1016/j.biomaterials.2006.01.017

Google Scholar

[12] T. Kasuga, H. Kondo, M. Nogami, Apatite formation on TiO2 in simulated body fluid, J. Cryst. Growth 235 (2002) 235-240.

DOI: 10.1016/s0022-0248(01)01782-1

Google Scholar

[13] T. Kokubo, H.M. Kim, M. Kawashita, H. Takadama, T. Miyazaki, M. Uchida, T. Nakamura,  Nucleation and growth of apatite an amorphous phases in simulated body fluid, Glass Sci. Technol. 73 (2000) 247-254.

Google Scholar

[14] E.G. Nordstrom, O.L.S. Munoz, Physics of bone bonding mechanism of different surface bioactive ceramic materials in vitro and in vivo, Biomed. Mater. Eng. 11 (2001) 221-231.

Google Scholar

[15] H. Cao, X. Liu, Activating titanium oxide coatings for orthopedic implants, Surf. Coat. Tech. 233 (2013) 57-64.

DOI: 10.1016/j.surfcoat.2013.01.043

Google Scholar

[16] A. Reinis, M. Pilmane, A. Stunda, J. Vetra, J. Kroica, D. Rostoka, G. Salms, A. Vostroilovs, A. Dons, L. Berziņa-Cimdina, In vitro and in vivo Study of S. epidermidis and Ps. aeruginosa Adhesion and Colonisation Intensity on Originally Synthesised Biomaterials with Different Chemical Composition and Modified Surfaces and its Effect on TNF-α, β-defensin-2 and Il-10 Expression in Tissues, Medicina 47 (10) (2011).

DOI: 10.3390/medicina47100080

Google Scholar

[17] T.J. Webster, C. Ergun, R.H. Doremus, R.W. Siegel, R. Bizios, Enhanced osteoclast-like cell functions on nanophase ceramics, Biomaterials 22 (2001) 1327-1333.

DOI: 10.1016/s0142-9612(00)00285-4

Google Scholar

[18] C. Drouet, Apatite formation: Why it may not work as planned, and how to conclusively identify apatite compounds, Biomed. Res. Int. 2013 (2013) 1-12, doi. org/10. 1155/2013/490946.

DOI: 10.1155/2013/490946

Google Scholar