Microstructure and Corrosion Properties of Homogenized Mg-4Zn-1La Magnesium Alloy

Article Preview

Abstract:

In this study, microstructure and corrosion behaviour of homogenized Mg-4Zn-1La magnesium alloy was investigated. Mg-4Zn-1La alloy was produced by low-pressure die casting method. Homogenization treatments were performed at 350 °C and 400 °C for 12, 18, 24 and 48 hours, followed by rapid cooling in water at room temperature. Microstructure characterizations showed that La addition led to a formation of semi-continuous network structure and islands of second phases which identified as T-phase (Mg7Zn3RE). A significant amount of second phase dissolution and an increase in a-Mg grain size with increasing both homogenization time and temperature was observed. Homogenization treatment led to an improvement in corrosion resistance of Mg-4Zn-1La alloy. Homogenization at 400 °C resulted in better corrosion resistance than homogenization at 350 °C for all homogenization duration.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

118-123

Citation:

Online since:

August 2017

Export:

Price:

* - Corresponding Author

[1] H.E., Friedrich, B.L., Mordike, Magnesium Technology: Metallurgy, Design Data, Applications. Springer Science & Business Media. (2006).

Google Scholar

[2] B.L., Mordike, T., Ebert, Magnesium: Properties — applications — potential. Materials Science and Engineering: A 302, (2001) 37–45.

Google Scholar

[3] X., Gao, J.F., Nie,. Characterization of strengthening precipitate phases in a Mg–Zn alloy. Scripta Materialia 56, (2007) 645–648.

DOI: 10.1016/j.scriptamat.2007.01.006

Google Scholar

[4] S., Cai, T., Lei, N., Li, F., Feng,. Effects of Zn on microstructure, mechanical properties and corrosion behavior of Mg–Zn alloys. Materials Science and Engineering: C 32, (2012) 2570–2577.

DOI: 10.1016/j.msec.2012.07.042

Google Scholar

[5] ASM Handbook: Volume 3: Alloy Phase Diagrams, 10 edition. ed, . ASM International, Materials Park, Ohio. (1992).

Google Scholar

[6] Z., Zhang, X., Liu, W., Hu, J., Li, Q., Le, L., Bao, Z., Zhu, J., Cui, Microstructures, mechanical properties and corrosion behaviors of Mg–Y–Zn–Zr alloys with specific Y/Zn mole ratios. Journal of Alloys and Compounds 624, (2015) 116–125.

DOI: 10.1016/j.jallcom.2014.10.177

Google Scholar

[7] A.A., Luo, R.K., Mishra, A.K., Sachdev, High-ductility magnesium–zinc–cerium extrusion alloys. Scripta Materialia 64, (2011) 410–413.

DOI: 10.1016/j.scriptamat.2010.10.045

Google Scholar

[8] H.Y., Jeong, B., Kim, S., Kim, H.J., Kim, S.S., Park, Effect of Ce addition on the microstructure and tensile properties of extruded Mg–Zn–Zr alloys. Materials Science and Engineering: A 612, (2014) 217–222.

DOI: 10.1016/j.msea.2014.06.054

Google Scholar

[9] Y., Du, M., Zheng, X., Qiao, D., Wang, W., Peng, K., Wu, B., Jiang, Improving microstructure and mechanical properties in Mg–6 mass% Zn alloys by combined addition of Ca and Ce. Materials Science and Engineering: A 656, (2016) 67–74.

DOI: 10.1016/j.msea.2016.01.034

Google Scholar

[10] S.M., He, L.M., Peng X.Q. Zeng, W.J., Ding, Y.P., Zhu,. Comparison of the microstructure and mechanical properties of a ZK60 alloy with and without 1. 3 wt. % gadolinium addition. Materials Science and Engineering: A 433, (2006) 175–181.

DOI: 10.1016/j.msea.2006.06.063

Google Scholar

[11] H., Feng, H., Liu, H., Cao, Y. Yang, Y. Xu, J. Guan, Effect of precipitates on mechanical and damping properties of Mg–Zn–Y–Nd alloys. Materials Science and Engineering: A 639, (2015)1–7.

DOI: 10.1016/j.msea.2015.04.092

Google Scholar

[12] Y. Z Du,., X.G., Qiao, M.Y., Zheng, K., Wu, S.W., Xu, Development of high-strength, low-cost wrought Mg–2. 5 mass% Zn alloy through micro-alloying with Ca and La (2015).

DOI: 10.1016/j.matdes.2015.07.029

Google Scholar

[13] M., Liang, H., Liao, W., Ding, L., Peng, P., Fu,. Microstructure characterization on Mg-2Nd-4Zn-1Zr alloy during heat treatment. Transactions of Nonferrous Metals Society of China 22, (2012) 2327–2333.

DOI: 10.1016/s1003-6326(11)61467-2

Google Scholar

[14] I., Nakatsugawa, S., Kamado, Y., Kojima, R., Ninomiya, K., Kubota,. Corrosion of Magnesium Alloys Containing Rare Earth Elements. Corrosion Reviews 16, (1998), 139–158.

DOI: 10.1515/corrrev.1998.16.1-2.139

Google Scholar

[15] Y., Tamura, S., Kawamoto, H., Soda, A. McLean,. Effects of Lanthanum and Zirconium on Cast Structure and Room Temperature Mechanical Properties of Mg-La-Zr Alloys. Materials Transactions 52, (2011) 1777–1786.

DOI: 10.2320/matertrans.m2011131

Google Scholar

[16] Q., Zhang, L., Tong, L., Cheng, Z., Jiang, J., Meng, H., Zhang, Effect of Ce/La microalloying on microstructural evolution of Mg-Zn-Ca alloy during solution treatment. Journal of Rare Earths 33, (2015) 70–76.

DOI: 10.1016/s1002-0721(14)60385-9

Google Scholar

[17] L.B., Tong, Q.X., Zhang, Z.H., Jiang, J.B., Zhang, J., Meng, L.R., Cheng, H.J., Zhang, Microstructures, mechanical properties and corrosion resistances of extruded Mg-Zn-Ca-xCe/La alloys. J Mech Behav Biomed Mater 62, (2016) 57–70.

DOI: 10.1016/j.jmbbm.2016.04.038

Google Scholar

[18] M. -C., Zhao, M. Liu, , G.L., Song, A., Atrens, Influence of Microstructure on Corrosion of As-cast ZE41. Adv. Eng. Mater. 10, (2008), 104–111.

DOI: 10.1002/adem.200700246

Google Scholar

[19] W.C., Neil, M., Forsyth, P.C., Howlett, C.R., Hutchinson, B.R.W., Hinton,. Corrosion of magnesium alloy ZE41 – The role of microstructural features. Corrosion Science 51, 2009, 387–394.

DOI: 10.1016/j.corsci.2008.11.005

Google Scholar

[20] W.C., Neil, M., Forsyth, P.C., Howlett, C.R., Hutchinson, B.R.W. Hinton, Corrosion of heat treated magnesium alloy ZE41. Corrosion Science 53, (2011), 3299–3308.

DOI: 10.1016/j.corsci.2011.06.005

Google Scholar

[21] L.Y., Wei, G.L., Dunlop, H., Westengen, Precipitation Hardening of Mg-Zn and Mg-Zn-RE alloys. MMTA 26, (1994) 1705–1716.

DOI: 10.1007/bf02670757

Google Scholar

[22] M.L., Huang, L.N., Dong, Y.L., Wang, L.W., Quan, Study of the Phases of Mg-Zn-La Magnesium Alloys at 150°C. Advanced Materials Research 750-752, (2013) 679–682.

DOI: 10.4028/www.scientific.net/amr.750-752.679

Google Scholar