The Application of Fibre Reinforced Concrete for Protective Shelter from Auxiliary Material

Article Preview

Abstract:

The article deals with the application of fibre reinforced concrete for protective shelter from auxiliary material. It describes a basic structure element, a structure of the shelter, and a process of building.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

374-381

Citation:

Online since:

September 2017

Export:

Price:

* - Corresponding Author

[1] Toutlemonde F, Resplendino J. (2010) Designing and building with UHPFRC: state of the art and development. ISTE-Wiley, London.

Google Scholar

[2] Bierwagen, D., and McDonald N., Ultra High Performance Concrete Highway Bridge, In: Proc. Precast/Prestressed Concrete Institute National Bridge Conference, Palm Springs, California, (2005).

Google Scholar

[3] Keierleber B., Bierwagen D., Wipf T., and Abu-Hawas H A., Design of Buchanan County, Iowa Bridge Using Ultra-High Performance Concrete and Pi-Girder Cross Section, In: Proc. Precast/Prestressed Concrete Institute National Bridge Conference, Orlando, Florida, (2008).

DOI: 10.15554/bm-20

Google Scholar

[4] Štoller, J., Dvořák, P. Field tests of cementitious composites suitable for protective structures and critical infrastructure. (2017) Key Engineering Materials, 722 KEM, pp.3-11. DOI: 10. 4028/www. scientific. net/KEM. 722. 3.

DOI: 10.4028/www.scientific.net/kem.722.3

Google Scholar

[5] Štoller, Jiří; Dvořák, Petr. Evaluation of High Performance Concrete Samples under Explosive Blast Load. In: Transport Means 2016 - Proceedings of 20th International Scientific Conference. Kaunas, Litva: Kaunas University of Technology, 2016, pp.117-120.

Google Scholar

[6] Štoller, Jiří; Dvořák, Petr. Field Tests of Cementitious Composites Suitable for Protective Structures and Critical Infrastructure. Key Engineering Materials, Trans Tech Publications Ltd, Special Concrete and Composites 2016, 2016, vol. 722, no. October 2016, pp.3-11.

DOI: 10.4028/www.scientific.net/kem.722.3

Google Scholar

[7] Štoller, J., Dvořák, P. Field tests of high performance fiber reinforced concrete slabs: Impact of contact and distant explosions (2015).

DOI: 10.1109/miltechs.2015.7153679

Google Scholar

[8] Štoller, J., Zezulová, E. Testing of critical infrastructure protection against the distant trinitrotoluene blast (2015) Transport Means - Proceedings of the International Conference, 2015-January, pp.505-508.

Google Scholar

[9] Štoller, J., Dvořák, P. Non-destructive testing of full-scale slabs before and after blast load (2015) Transport Means - Proceedings of the International Conference, 2015-January, pp.298-301.

Google Scholar

[10] Štoller, J., Zezulová, E. The field testing of high performance fiber reinforced concrete slabs under the TNT load explosion together with the analytical solution and the numerical modelling of those tests results (2015).

DOI: 10.1109/miltechs.2015.7153666

Google Scholar

[11] Figuli, L., Papan, D. Single Degree of Freedom Analysis of Steel Beams under Blast Loading. Applied Mechanics and Materials Vol. 617 (2014) pp.92-95. Trans Tech Publications, Switzerland 2014. doi: 10. 4028/www. scientific. net/AMM. 617. 92.

DOI: 10.4028/www.scientific.net/amm.617.92

Google Scholar

[12] Figuli, L., Magura, M., Kavicky, V., Jangl, Š. Application of recyclable materials for an increase in building safety against the explosion of an improvised explosive device (2014).

DOI: 10.4028/www.scientific.net/amr.1001.447

Google Scholar

[13] Figuli, L., Jangl, Š., Papán, D. Modelling and Testing of Blast Effect on the Structures (2016) IOP Conference Series: Earth and Environmental Science, 44 (5), art. No. 052051. DOI: 10. 1088/1755-1315/44/5/052051.

DOI: 10.1088/1755-1315/44/5/052051

Google Scholar

[14] Kavicky, V., Figuli, L., Jangl, S., Ligasová, Z. Analysis of the field test results of ammonium nitrate: Fuel oil explosives as improvised explosive device charges (2014).

DOI: 10.2495/susi140261

Google Scholar

[15] Kravcov, A., Svoboda, P., Konvalinka, A., Cherepetskaya, E.B., Sas, I.E., Morozov, N.A., Zatloukal, J., Koťátková, J. Evaluation of crack formation in concrete and basalt specimens under cyclic uniaxial load using acoustic emission and computed X-Ray Tomography (2017).

DOI: 10.4028/www.scientific.net/kem.722.247

Google Scholar

[16] Kravcov, A., Svoboda, P., Konvalinka, A., Cherepetskaya, E.B., Karabutov, A.A., Morozov, D.V., Shibaev, I.A. Laser-ultrasonic testing of the structure and properties of concrete and carbon fiber-reinforced plastics (2017).

DOI: 10.4028/www.scientific.net/kem.722.267

Google Scholar

[17] Svoboda, P., Kravcov, A., Pospíchal, V. : Evaluation of Multi Hazards for Nuclear Power Plants. Part 1. Wind hasards, CTU Publishing House, ISBN 978-80-01-05491-8, (2014).

Google Scholar

[18] Kravcov, A., Svoboda, P. Experimental Studies of the Blast Pressure due to an Explosion in the tunnel. 6th Intern. Symposium on Tunnel Safety and Security, Marseille, France, (2014).

Google Scholar

[19] Prochazka, P.P., Kravcov, A., T. Seng Lok. Assessment of Laminated Cylindrical Arch Loaded by a Shock Wave, International Journal of Protective Structures, Vol. 2, No. 2, June 2011, ISSN 2041-4196, DOI 10. 1260/2041-4196. 2. 2. 267.

DOI: 10.1260/2041-4196.2.2.267

Google Scholar

[20] Kravtsov, A., Svoboda, P.: Numerical Simulations of Shock Waves in contents of Building Protection and Secure, CTU Publ House 2012, ISBN: 978-80-01-05074-3.

Google Scholar

[21] HEJMAL, Zdeněk; MAŇAS, Pavel; ŠTOLLER, Jiří. Measurement and numerical simulation of the effects of an explosion on HPFRC slab. In: Proceedings of 20th International Scientific Conference Transport Means 2016, Part III. Kaunas, Lithuania: Kaunas University of Technology, 2016, pp.881-884.

Google Scholar

[22] ŠTOLLER, Jiří; MAŇAS, Pavel; ZEZULOVÁ, Eva. Blast testing and simulation methods. Praha: Česká Technika-nakladatelství ČVUT - Praha, 2015, pp.35-100. Blast Testing and Simulation Methods. ISBN 978-80-01-05898-5.

Google Scholar

[23] STANAG 2280 - Design threat levels and handover procedures for temporary protective structures, " NATO Standardization Agency (NSA), (2008).

Google Scholar