Thermo-Physical Properties Measurement of Advanced TBC Materials with Pyrochlore and Perovskite Structures

Article Preview

Abstract:

Thermal barrier coatings (TBCs) serve as thermal insulator in the hot region of an aircraft engine. Besides this, it also protects the underlying metal surface from the harsh corrosive and eroding environment. The associated lower thermal conductivity of TBC ceramic materials plays an important role in the improvement of thermal efficiency of the engine in term of increased combustion temperature and power. The thermal conductivity of the conventional yttria stabilized zirconia (YSZ) and three advanced ceramic materials with perovskite (CaZrO3) and pyrochlore structure (La0.75Nd0.25)2Zr2O7 & Nd2Ce2O7) have been determined using differential scanning calorimetry (DSC). With thin metallic disk on the ceramic samples of different heights were heated / scanned using a standard DSC apparatus. The results were evaluated for the thermal conductivity measurement using well established procedure /calculations. The analyzed results were compared with that of other techniques given by other researchers and found to be in good agreement with an error of 10-15%. The result of coefficient of thermal expansion (CTE) that was measured using a dilatometer up to 1273°K has also given.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

236-244

Citation:

Online since:

September 2018

Export:

* - Corresponding Author

[1] W.Ma, et al., Perovskite-Type Strontium Zirconate as a New Material for Thermal Barrier Coatings. J. Am. Ceram. Soc., 91 (2008) 2630-2635.

DOI: 10.1111/j.1551-2916.2008.02472.x

Google Scholar

[2] W. Ma, et al., New Generation Perovskite Thermal Barrier Coating Materials. J. Therm. Spray Technol.,17(2008) 831-837.

DOI: 10.1007/s11666-008-9239-4

Google Scholar

[3] J. Yu, et al., Thermal conductivity of plasma sprayed Sm2Zr2O7 coatings. J. Eur. Ceram. Soc., 30 (2010) 799-804.

Google Scholar

[4] R.Gadow, and M. Lischka, Lanthanum hexaaluminate — novel thermal barrier coatings for gas turbine applications — materials and process development. Surf. Coat. Technol., 151 (2002) 392-399.

DOI: 10.1016/s0257-8972(01)01642-5

Google Scholar

[5] A.J. Slifka, et al., Thermal conductivity of a zirconia thermal barrier coating. J. Therm. Spray Technol., 7 (1998) 43-46.

DOI: 10.1007/s11666-006-5001-y

Google Scholar

[6] C.R.C. Lima, and R. da Exaltacaão Trevisan, Temperature measurements and adhesion properties of plasma sprayed thermal barrier coatings. J. Therm. Spray Technol., 8 (1999) 323-327.

DOI: 10.1361/105996399770350548

Google Scholar

[7] J.Kaspar, and O. Ambroz. Plasma spray coatings as thermal barriers based on zirconium oxide with yttrium oxide. in The 1st Plasma-Technik-Symposium. 1988. Plasma-Technik AG, Wohlen, Switzerland.

Google Scholar

[8] Z.-G. Liu, et al., Novel thermal barrier coatings based on rare-earth zirconates/YSZ double-ceramic-layer system deposited by plasma spraying. J. Alloys Compd., 647 (2015) 438-444.

DOI: 10.1016/j.jallcom.2015.05.189

Google Scholar

[9] X.Wang, et al., Structural evolution and thermal conductivities of (Gd1−xYbx)2Zr2O7 (x=0, 0.02, 0.04, 0.06, 0.08, 0.1) ceramics for thermal barrier coatings. Ceram. Int., 41 (2015) 12621-12625.

DOI: 10.1016/j.ceramint.2015.06.090

Google Scholar

[10] N. Schlegel, et al., Cycling Performance of a Columnar-Structured Complex Perovskite in a Temperature Gradient Test. J. Therm. Spray Technol., 24(2015) 1205-1212.

DOI: 10.1007/s11666-015-0254-y

Google Scholar

[11] M.Li, L. Guo, and F. Ye, Phase structure and thermal conductivities of Er2O3 stabilized ZrO2 toughened Gd2Zr2O7 ceramics for thermal barrier coatings. Ceram. Int., 42 (2016) 16584-16588.

DOI: 10.1016/j.ceramint.2016.07.079

Google Scholar

[12] T. Liu, et al., Properties evolution of plasma-sprayed La2Zr2O7 coating induced by pore structure evolution during thermal exposure. Ceram. Int., 42 (2016) 15485-15492.

DOI: 10.1016/j.ceramint.2016.06.201

Google Scholar

[13] S. Mahade, et al., Failure analysis of Gd2Zr2O7/YSZ multi-layered thermal barrier coatings subjected to thermal cyclic fatigue. J. Alloys Compd., 689 (2016) 1011-1019.

DOI: 10.1016/j.jallcom.2016.07.333

Google Scholar

[14] B.Paul, et al., Structural properties and the fluorite–pyrochlore phase transition in La2Zr2O7: The role of oxygen to induce local disordered states. J. Alloys Compd., 686 (2016) 130-136.

DOI: 10.1016/j.jallcom.2016.05.347

Google Scholar

[15] Z. Xiaofeng, et al., Evolution of microstructure and cyclic life of La2(Ce0.3Zr0.7)2O7-3 wt.%Y2O3 coatings. Surf. Coat. Technol.,307 (2016) 951-956.

DOI: 10.1016/j.surfcoat.2016.10.027

Google Scholar

[16] C. Xiaoge, et al., Thermal conductivity and expansion coefficient of Ln2LaTaO7 (Ln=Er and Yb) oxides for thermal barrier coating applications. Ceram. Int., 42 (2016) 13491-13496.

DOI: 10.1016/j.ceramint.2016.05.141

Google Scholar

[17] D. Zhang, et al., Investigation of a new type of composite ceramics for thermal barrier coatings. Mater. Des., 112 (2016) 27-33.

Google Scholar

[18] M.R. Loghman-Estarki, et al., Comparison of hot corrosion behavior of nanostructured ScYSZ and YSZ thermal barrier coatings. Ceram. Int., 42 (2016) 7432-7439.

DOI: 10.1016/j.ceramint.2016.01.147

Google Scholar

[19] H.-F.Liu, et al., Hot corrosion behavior of Sc2O3–Y2O3–ZrO2 thermal barrier coatings in presence of Na2SO4 + V2O5 molten salt. Corros. Sci., 85 (2014) pp.87-93.

DOI: 10.1016/j.corsci.2014.04.001

Google Scholar

[20] M.B. Bhatty, F.A. Khalid, and A.N. Khan, Behavior of calcia-stabilized zirconia coating at high temperature, deposited by air plasma spraying system. J. Therm. Spray Technol., 21 (2012) pp.121-131.

DOI: 10.1007/s11666-011-9692-3

Google Scholar

[21] R.Ianoş, and P. Barvinschi, Solution combustion synthesis of calcium zirconate, CaZrO3, powders. J. Solid State Chem., 183 (2010) 491-496.

DOI: 10.1016/j.jssc.2009.12.015

Google Scholar

[22] K. Neufuss, et al. Structure and properties of CaZrO3 coatings prepared by WSP and APS spraying. in Thermal Spray 2003: Advancing the Science and Applying the Technology. 2003. Orlando, Florida, USA: ASM International.

DOI: 10.31399/asm.cp.itsc2003p1541

Google Scholar

[23] M.Pollet, S. Marinel, and G. Desgardin, CaZrO3, a Ni-co-sinterable dielectric material for base metal-multilayer ceramic capacitor applications. J. Eur. Ceram. Soc., 24 (2004) 119-127.

DOI: 10.1016/s0955-2219(03)00122-5

Google Scholar

[24] G.Di Girolamo, et al., Evolution of microstructural and mechanical properties of lanthanum zirconate thermal barrier coatings at high temperature. Surf. Coat. Technol., 268 (2015) 298-302.

DOI: 10.1016/j.surfcoat.2014.07.067

Google Scholar

[25] G. Mauer, et al., Improving Atmospheric Plasma Spraying of Zirconate Thermal Barrier Coatings Based on Particle Diagnostics. J. Therm. Spray Technol., 21 (2012) 363-371.

DOI: 10.1007/s11666-011-9706-1

Google Scholar

[26] G. Di Girolamo, et al., Microstructural, mechanical and thermal characteristics of zirconia-based thermal barrier coatings deposited by plasma spraying. Ceram. Int., 41 (2015) 11776-11785.

DOI: 10.1016/j.ceramint.2015.05.145

Google Scholar

[27] H. Chen, et al., Thermophysical properties of lanthanum zirconate coating prepared by plasma spraying and the influence of post-annealing. J. Alloys Compd., 486 (2009) 391-399.

DOI: 10.1016/j.jallcom.2009.06.162

Google Scholar

[28] X.Q. Cao, R. Vassen, and D. Stoever, Ceramic materials for thermal barrier coatings. J. Eur. Ceram. Soc., 24 (2004) 1-10.

Google Scholar

[29] H. Lehmann, et al., Thermal Conductivity and Thermal Expansion Coefficients of the Lanthanum Rare-Earth-Element Zirconate System. J. Am. Ceram. Soc., 86 (2003) 1338-1344.

DOI: 10.1111/j.1151-2916.2003.tb03473.x

Google Scholar

[30] H. Dai, et al., Neodymium–cerium oxide as new thermal barrier coating material. Surf. Coat. Technol., 20 (2006) 2527-2533.

Google Scholar

[31] H.Wang, and R. Dinwiddie, Reliability of laser flash thermal diffusivity measurements of the thermal barrier coatings. J. Therm. Spray Technol., 9 (2000) 210-214.

DOI: 10.1361/105996300770349944

Google Scholar

[32] X.Guo, et al., Image-based multi-scale simulation and experimental validation of thermal conductivity of lanthanum zirconate. Int. J. Heat Mass Transfer, 100 (2016) 34-38.

DOI: 10.1016/j.ijheatmasstransfer.2016.04.067

Google Scholar

[33] R.Taylor, Thermal conductivity determinations of thermal barrier coatings. Mater. Sci. Eng., A, 245 (1998) 160-167.

Google Scholar

[34] J.F. Bisson, et al., Thermal conductivity of yttria–zirconia single crystals, determined with spatially resolved infrared thermography. J. Am. Ceram. Soc., 83 (2000) 1993-(1998).

DOI: 10.1111/j.1151-2916.2000.tb01502.x

Google Scholar

[35] T.Sakagami, and S. Kubo, Applications of pulse heating thermography and lock-in thermography to quantitative nondestructive evaluations. Infrared Phys. Technol., 43 (2002) 211-218.

DOI: 10.1016/s1350-4495(02)00141-x

Google Scholar

[36] F. Cernuschi, et al., Thermal diffusivity measurements by photothermal and thermographic techniques. Int. J. Thermophys., 25 (2004) 439-457.

Google Scholar

[37] J. Sun, Thermal Property Measurement for Thermal Barrier Coatings by Thermal Imaging Method. Advanced Ceramic Coatings and Interfaces V: Ceramic Engineering and Science Proceedings, 31 (2010) 87-94.

DOI: 10.1002/9780470943960.ch7

Google Scholar

[38] C.P. Camirand, Measurement of thermal conductivity by differential scanning calorimetry. Thermochim. Acta, 47 (2004) 1-4.

Google Scholar

[39] G. Hakvoort, L. Van Reijen, and A. Aartsen, Measurement of the thermal conductivity of solid substances by DSC. Thermochim. Acta, 93 (1985) 317-320.

DOI: 10.1016/0040-6031(85)85081-4

Google Scholar

[40] C.A. Dai, Y.F. Chen, and M.W. Liu, Thermal properties measurements of renatured gelatin using conventional and temperature modulated differential scanning calorimetry. J. Appl. Polym. Sci., 99 (2006) 1795-1801.

DOI: 10.1002/app.22711

Google Scholar

[41] C.M. Lopes, and M.I. Felisberti, Thermal conductivity of PET/(LDPE/AI) composites determined by MDSC. Polym. Test., 23 (2004) 637-643.

DOI: 10.1016/j.polymertesting.2004.01.013

Google Scholar

[42] S.M. Marcus, and R.L. Blaine, Thermal conductivity of polymers, glasses and ceramics by modulated DSC. Thermochim. Acta, 243 (1994) 231-239.

DOI: 10.1016/0040-6031(94)85058-5

Google Scholar

[43] X.Cao, et al., New double-ceramic-layer thermal barrier coatings based on zirconia–rare earth composite oxides. J. Eur. Ceram. Soc., 26 (2006) 247-251.

DOI: 10.1016/j.jeurceramsoc.2004.11.007

Google Scholar

[44] R. Vassen, et al., Zirconates as New Materials for Thermal Barrier Coatings. J. Am. Ceram. Soc., 83 (2000) 2023-(2028).

Google Scholar

[45] X. Zhong, et al., Phase stability and thermophysical properties of neodymium cerium composite oxide. J. Alloys Compd., 469 (2009) 82-88.

DOI: 10.1016/j.jallcom.2008.01.156

Google Scholar

[46] Z.-G.Liu, et al., Effect of Ti substitution for Zr on the thermal expansion property of fluorite-type Gd2 Zr2 O7. Mater. Des., 30 (2009) 3784-3788.

DOI: 10.1016/j.matdes.2009.01.030

Google Scholar

[47] C.U. Hardwicke, and Y.-C. Lau, Advances in thermal spray coatings for gas turbines and energy generation: a review. J. Therm. Spray Technol., 22 (2013) 564-576.

DOI: 10.1007/s11666-013-9904-0

Google Scholar

[48] J.Wu, et al., Low-Thermal-Conductivity Rare-Earth Zirconates for Potential Thermal-Barrier-Coating Applications. J. Am. Ceram. Soc., 85 (2002) 3031-3035.

DOI: 10.1111/j.1151-2916.2002.tb00574.x

Google Scholar